首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
微波解吸技术及其应用   总被引:2,自引:0,他引:2  
通过实验数据对活性炭的升温行为进行了定量描述并对微波解吸动力学模式进行了分析。结果表明,活性炭升温行为可分为2个阶段进行描述,微波解吸再生载乙醇活性炭的速度很快,1 min即可达到80%以上的脱附率,一般3~4 min后脱附率达90%以上,整个解吸过程所用的时间不到6 min.  相似文献   

2.
微波解吸技术及其应用   总被引:5,自引:0,他引:5  
通过实验数据对活性炭的升温行为进行了定量描述并对微波解吸动力学模式进行了分析。结果表明,活性炭升温行为可分为2个阶段进行描述,微波解吸再生载乙醇活性炭的速度很快,1 min即可达到80%以上的脱附率,一般3~4min后脱附率达90%以上,整个解吸过程所用的时间不到6min。  相似文献   

3.
利用微波作为加热手段,采用椰壳基颗粒活性炭(GAC)为吸附剂,经吸附甲苯达饱和后进行流化床微波解吸实验.结果表明:(1)前4 min,轻微流化状态下的甲苯浓度总体小于中等流化状态;4 min后,轻微流化状态下的甲苯浓度逐渐大于中等流化状态.轻微流化状态下的甲苯解吸效果不理想,与中等流化状态有很大差距.流化床微波解吸适宜...  相似文献   

4.
微波紫外耦合辐射降解间硝基苯磺酸钠及活性炭再生   总被引:1,自引:0,他引:1  
郑双  郑彤  王鹏 《环境工程学报》2015,9(3):1238-1246
针对活性炭吸附法处理污水所面临的吸附剂物耗大及其所形成的危险废弃物处置难题,采用微波紫外耦合辐射技术对活性炭无害化再生。以活性炭吸附电镀废水中的间硝基苯磺酸钠(3-NBSA)为研究对象,考察了p H对活性炭吸附3-NBSA效果的影响,研究了活性炭的吸附动力学和吸附等温线,最后探讨了微波功率、微波辐照时间、空气流量及再生次数对活性炭再生效果和再生损耗率的影响。实验结果表明,p H在2~8范围内对活性炭吸附效果影响不大,活性炭吸附动力学符合准二级动力学模型,等温吸附特性可用Freundlich等温方程式来描述。活性炭再生实验的最佳工艺条件:微波功率为500W,微波辐照时间为10 min,空气流量为0.024 m3/h。最佳工艺条件下活性炭的再生率达到99.62%,且连续再生5次后仍能达到90.02%。实验表明,在微波紫外耦合辐射作用下比只在微波作用下,活性炭的再生效果和3-NBSA的降解效果更好。  相似文献   

5.
采用正交实验研究了微波、超声波条件对废触媒解吸效果的影响,对比实验结果表明,1次微波2次超声波联用技术锌的洗脱率较高,回收的活性炭超过了林业局粉状活性炭二级品指标.用洗脱的醋酸锌溶液制备的磷酸锌符合防锈颜料要求.最终的废液采用电石废渣中和后达到国家废水处理三级排放标准.实现了废触媒的综合回收利用.  相似文献   

6.
采用正交实验研究了微波、超声波条件对废触媒解吸效果的影响,对比实验结果表明,1次微波2次超声波联用技术锌的洗脱率较高,回收的活性炭超过了林业局粉状活性炭二级品指标。用洗脱的醋酸锌溶液制备的磷酸锌符合防锈颜料要求。最终的废液采用电石废渣中和后达到国家废水处理三级排放标准。实现了废触媒的综合回收利用。  相似文献   

7.
微波-活性炭联合作用在污染控制中的应用   总被引:1,自引:0,他引:1  
赵伟  刘希涛 《环境工程学报》2009,3(7):1153-1159
近年来,微波技术被越来越多地应用于污染控制方面的研究,其中相当一部分工作是借助于微波与活性炭的相互作用,即利用活性炭在微波辐照下可快速升温的特性,获得较高反应温度,同时活性炭还具有较强的还原能力和催化作用,从而达到分解吸附在活性炭孔隙内部或与活性炭共存于同一体系中的污染物的目的。首先从活性炭在微波场中升温的角度探讨了微波辐照对活性炭的作用,并就微波活性炭联合作用在气态污染物处理、液态污染物处理、土壤污染修复以及活性炭为载体的催化剂制备等方面的研究进展进行了评述。  相似文献   

8.
树脂与活性炭吸附油气的实验研究   总被引:1,自引:0,他引:1  
吸附剂的性能对油气吸附分离的效果起着决定性的作用。测定了活性炭和吸附树脂在常温下对油气的静态吸附和脱附特性,比较吸附树脂与活性炭的吸附率、解吸率。实验结果表明,吸附树脂吸附率高,解吸容易。测定了活性炭和吸附树脂对油气的吸附穿透曲线和热效应。实验结果表明,吸附树脂的穿透时间长,温升略低,适于油气吸附分离。同时,利用Yoo...  相似文献   

9.
活性炭-微波辐射法去除苯酚的机理研究   总被引:4,自引:1,他引:3  
通过微波辐射前后水样的紫外分光扫描分析,以及微波辐射后水样中的苯酚浓度和COD浓度之间线性相关性分析表明,活性炭-微波辐射强化除酚效率的主要机理是微波使反应体系温度升高导致的活性炭加速吸附作用,而不是微波诱导催化氧化作用。通过对微波辐射前后活性炭的SEM扫描电镜分析说明,活性炭在微波场中由于“微域爆炸”导致其表面及内部孔隙结构的变化, 吸附性能得到改善,是强化苯酚去除的另一原因。 研究还表明,在较短的作用时间内,活性炭-微波辐射法的除酚效率高于常温吸附,但低于沸腾条件下的高温吸附。活性炭-微波辐射去除苯酚的规律遵循其吸附特性,温度越高,吸附反应速度越快。  相似文献   

10.
为提高烟气脱硝效率,构建了微波辐照活性炭还原氮氧化物体系,通过对微波功率(温度)、反应空速、NO浓度、活性炭种类及粒径等影响因素的考察,研究了微波辐照活性炭还原NO体系的性能,通过反应动力学实验确定了活性炭还原NO反应的速率方程。研究结果表明,增大微波功率、减小反应空速均会提高NO还原效率,而改变NO浓度、活性炭种类以及粒径对NO还原效率无明显影响,微波功率为800 W,反应空速为2 000 h~(-1)时,对2 412 mg·m~(-3)的NO去除率可达99.8%,当NO浓度增至29 000 mg·m~(-3)时NO还原效率仍高达98.2%。通过反应动力学研究确定了反应的速率方程,其中反应级数为0.568 3,反应速率常数为14.71 s~(-1)。  相似文献   

11.
We investigated a new kind of activated carbon named gaiasafe-Formstoff [1] as an agent for powerful heavy metal reduction. This activated carbon contains highly dispersed sulfide compounds. Our investigations with lead containing wastewaters showed an outstanding metal sulfide precipitation power of the new agent. The lead reduction rates are independent of wastewater parameters like lead concentration and complexing agent concentration. Contacted as powder or as a fixed bed with wastewater gaiasafe-Formstoff showed the best cleaning capacity in comparison to all other agents tested. Investigations with gaiasafe-Formstoff about its ability to reduce the contents of further heavy metals in wastewater are under way. The gaiasafe-Formstoff reaction products with wastewater represent an energy-rich and raw material-rich resource when fed to metallurgical processes.  相似文献   

12.
研究了操作参数对活性炭固定床处理有机废气的影响。温度升高,吸附容量下降。湿度的存在会减少活性炭对有机物的吸附容量。适当的操作气速为0.1-0.5m/s,在此范围内,气速与压降在对数坐标上呈线性关系。  相似文献   

13.
生物脱硫法作为一种高效、高实用性的除硫新技术而受到越来越多的关注。以活性炭纤维为微生物载体,通过活性污泥上清液挂膜驯化,考察硫化氢进气量、喷淋量、pH值和硫酸根离子浓度等条件对脱硫效率的影响。研究结果表明,在室温下,硫化氢负荷为90 g/(m3.h),进气浓度控制在3 g/m3,进气量为60 L/h,喷淋量为250~650 L/(m3.d),pH为2~5的条件下,生物活性炭纤维对硫化氢的去除率可保持在98%以上。  相似文献   

14.
采用臭氧曝气法、粉末活性炭吸附法、颗粒活性炭过滤法、臭氧曝气-粉末活性炭吸附联用法、空气曝气-粉末活性炭吸附联用法对沼液中的氨气、硫化氢、吲哚、挥发酚类等主要致嗅物质的去除情况进行了研究,同时分析了不同方法对沼液中营养物质TN、DN、TP、DP等的影响。结果表明,采用粉末活性炭吸附法处理沼液,臭味物质的去除情况以及营养物质的保留效果最好,当粉末活性炭投加量为15 000 mg/L时,沼液中的硫化氢、吲哚、挥发酚已经完全去除,氨氮、氨气的去除率分别为11.42%、13.98%;DN、DP含量分别减少了10.46%、19.53%,但是TN、TP含量分别增加了6.26%、9.63%。  相似文献   

15.
The removal of hydrogen sulfide by oxidation-adsorption on two type carbon fibers, Actitex FC1201 and RS1301, was studied. Two kinetic steps where identified. During the first step, the degradation appears to be limited by the oxidation reaction. In the second kinetic step, the by-products inhibit the hydrogen sulfide degradation. This leads to a limitation in the carbon site's accessibility and to a lower kinetic. The Langmuir-Hinshelwood model was used to correlate the experimental results and to estimate the kinetic (k) and the Langmuir adsorption (K) constants. For FC1201 fibers, the kinetic constant (k) is five time higher and the adsorption constant is five time lower compared to the RS1301 fibers. The role of the humidity was found to be highly beneficial for the removal of hydrogen sulfide. Especially in the second kinetic step, where it removes the by-product formed and therefore delays the occurrence of this low kinetic step. The kinetic constant (k) is strongly influenced by humidity while the Langmuir adsorption constant (K) seems independent. The effect of the nature of the gas phase on the reaction kinetic was also studied. Under a dry atmosphere, we note that the oxidation-reaction occurs even if the gaseous oxygen is not present. This oxidation is due to the oxygen surface function of the carbon fibers. Moreover, the degradation kinetic is faster under a dry nitrogen atmosphere. The presence of water traces leads to the acidification of the carbon surface, under oxygen or carbon dioxide atmospheres, and hence limits the hydrogen sulfide dissociation. In a humid atmosphere, the oxygen or carbon dioxide leads to a faster reaction kinetic. The acidification of the carbon surface is largely counterbalanced by the dissolution of the by-products.  相似文献   

16.
Simultaneous removal of hydrogen sulfide (H2S) and ammonia (NH3) gases from gaseous streams was studied in a biofilter packed with granule activated carbon. Extensive studies, including the effects of carbon (C) source on the growth of inoculated microorganisms and gas removal efficiency, product analysis, bioaerosol emission, pressure drop, and cost evaluation, were conducted. The results indicated that molasses was a potential C source for inoculated cell growth that resulted in removal efficiencies of 99.5% for H2S and 99.2% for NH3. Microbial community observation by scanning electron microscopy indicated that granule activated carbon was an excellent support for microorganism attachment for long-term waste gas treatment. No disintegration or breakdown of biofilm was found when the system was operated for 140 days. The low bioaerosol concentration emitted from the biofilter showed that the system effectively avoided the environmental risk of bioaerosol emission. Also, the system is suitable to apply in the field because of its low pressure drop and treatment cost. Because NH3 gas was mainly converted to organic nitrogen, and H2S gas was converted to elemental sulfur, no acidification or alkalinity phenomena were found because of the metabolite products. Thus, the results of this study demonstrate that the biofilter is a feasible bioreactor in the removal of waste gases.  相似文献   

17.
研究了载硫温度、硫炭比(简称S/C),吸附温度等因素对载硫活性炭的硫含量、脱汞能力以及硫损失的影响,探讨载硫活性炭制备的工艺条件优化。结果表明,不同载硫温度下制备的载硫活性炭的气态Hg0吸附能力远强于原料活性炭;载硫温度不同时,负载到活性炭孔隙或表面上的硫的形态不同,导致了脱汞能力的差异,较合适的载硫温度为350℃;S/C为5%(质量分数,下同)时,随着吸附温度的升高,载硫活性炭的气态Hg0吸附量降低;在一定的载硫温度下,原料中S/C越高时,制备的载硫活性炭的硫含量越高、气态Hg0吸附能力越强,但其硫损失率也越高,从实际的使用效果来看,较合适的S/C为10%。  相似文献   

18.
Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.  相似文献   

19.
In this study, activated carbon was prepared from Chinese chestnut burs assisted by microwave irradiation with potassium hydroxide (KOH) as activator, and the process conditions were optimized employing Box-Behnken design (BBD) and response surface methodology (RSM). The optimized variables were irradiation time, impregnation time, and mass ratio of alkali-to-carbon, and the iodine adsorption value was used to evaluate the adsorption property of activated carbon. The optimal preparation conditions were determined as follows: irradiation time 17 min, impregnation time 240 min, and mass ratio of alkali-to-char 1.5:1. Meanwhile, the relatively high iodine adsorption value (1141.4 mg/g) was also obtained. Furthermore, the pore structural characterization of activated carbon was analyzed. The analyzed results showed a larger Brunauer-Emmett-Teller (BET) specific surface area (1254.5 m2/g) and a higher microporosity ratio (87.2%), a bigger total pore volume (0.6565 m3/g), but a smaller average pore size (2.093 nm), which demonstrated the obtained activated carbon possessed strong adsorption capacity and well-developed microporous structure. This research could not only establish the foundation of utilizing chestnut burs to prepare activated carbon, but also provide the basis for exploitation of Chinese chestnut by-products.

Implications: Because Chinese chestnut burs are the by-products and usually discarded upon harvesting subsequently, the utilization of chestnut burs as a potential source of activated carbon is of great profit to the chestnut processing industries.  相似文献   

20.
Ozonation of aniline promoted by activated carbon   总被引:1,自引:0,他引:1  
The removal of aniline from aqueous solutions by simultaneous use of ozone and activated carbon was investigated at different solution pH. For comparative purposes, single ozonation and adsorption on activated carbon were carried out in the same experimental set-up. In order to evaluate the role of the activated carbon surface chemistry during ozonation, a commercial activated carbon, Norit GAC 1240 PLUS, was submitted to oxidation in the liquid phase with HNO(3). The texture and surface chemistry of the activated carbon samples were characterized. During ozonation, complete conversion of aniline was achieved after approximately 20 min, regardless of the presence of activated carbon. In all cases, several by-products were formed during ozonation. Nitrobenzene, o- and p-aminophenol were the primary aromatic oxidation by-products identified. In terms of TOC removal, best results were achieved by the simultaneous use of ozone and activated carbon. Though there is a strong contribution of adsorption, a considerable synergetic effect between ozone and activated carbon is observed. In general, activated carbon promotes the reaction of ozonation enhancing the efficiency of this treatment process. The basic activated carbon presented greater activity in this process leading to higher mineralization rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号