首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mining operations result in a wide range of environmental impacts: acid mine drainage (AMD) and acid sulfate soils being among the most common. Due to their acidic pH and high soluble metal concentrations, both AMD and acid sulfate soils can severely damage the local ecosystems. Proper post‐mining management practices are necessary to control AMD‐related environmental issues. Current AMD‐impacted soil treatment technologies are rather expensive and typically not environmentally sustainable. We conducted a 60‐day bench‐scale study to evaluate the potential of a cost‐effective and environment‐friendly technology in treating AMD‐impacted soils. The metal binding and acid‐neutralizing capacity of an industrial by‐product, drinking water treatment residuals (WTRs) were used for AMD remediation. Two types of locally generated WTRs, an aluminum‐based WTR (Al‐WTR) and a lime‐based WTR (Ca‐WTR) were used. Highly acidic AMD‐impacted soil containing very high concentrations of metals and metalloids, such as iron, nickel, and arsenic, was collected from the Tab‐Simco coal mine in Carbondale, Illinois. Soil amendment using a 1:1 Al‐ and Ca‐WTR mix, applied at 5 and 10 percent rates significantly lowered the soluble and exchangeable fractions of metals in the AMD‐impacted soil, thus lowering potential metal toxicity. Soil pH increased from an extremely acidic 2.69 to a near‐neutral 6.86 standard units over the 60‐day study period. Results from this preliminary study suggest the possibility of a successful scale‐up of this innovative, cost‐effective, and environmentally sustainable technology for remediating AMD‐impacted acid sulfate soils.  相似文献   

2.
Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain, treat, and/or remediate these valuable resources is an important part of restoring these impacted sites. Various options are available for remediating the groundwater and other affected media at these sites. Frequently, pump and treat technologies have been used that can provide well‐head treatment at installed extraction wells. This approach has shown to be costly and excessively time consuming. Some of the technologies used for pump and treat are granular activated carbon (GAC), biotreatment, and chemical oxidation. Other approaches use in‐situ treatment applications that include enhanced bioremediation, monitored natural attenuation (biotic and abiotic), and chemical reduction/fixation. Ultimately, it may only be feasible, economically or practicably, to use hydraulic containment systems. Depending upon site‐specific conditions, these treatment approaches can be used in various combinations to offer the best remedial action. A comparison of water treatment system costs extrapolated from the treatability studies performed on contaminated groundwater from the McCormick/Baxter Superfund site in Stockton, California, yielded operation and maintenance costs of $1.19/1,000 gal. for carbon treatment and $7.53/1,000 gal. for ultraviolet (UV) peroxidation, respectively.  相似文献   

3.
分步沉淀法处理酸性矿山废水   总被引:1,自引:0,他引:1  
采用分步沉淀工艺处理酸性矿山废水,考察了工艺条件对废水中有价金属元素回收效果的影响。实验结果表明:Ca(OH)_2为适宜的废水pH调节剂;调节废水pH至4.00左右并投加0.05 mL/L的H_2O_2,可首先去除Fe~(2+)及Fe~(3+),得到富Fe渣(w(Fe)=51.00%);调节废水pH至6.00~6.50,先投加50 mg/L的Na_2S,去除废水中的Cu~(2+),获得富Cu渣(w(Cu)=10.89%),再将Na_2S的投加量增至100 mg/L,去除废水中的Zn与Mn,获得富Zn-Mn渣(w(Cu)=2.37%,w(Mn)=6.79%,w(Pb)=1.61%);进一步调节废水pH至8.40,可去除剩余的Zn、Mn及其他重金属。分步沉淀工艺处理后的废水可达标排放,产生的富Fe渣、富Cu渣及富Zn-Mn渣可直接出售或具有利用价值。分步沉淀工艺可实现有价金属元素的高效回收,大幅度降低废水处理的实际成本,值得工程应用与推广。  相似文献   

4.
The North Fork of Clear Creek (NFCC), Colorado, is an acid‐mine‐drainage‐impacted stream typical of many mountain surface waters affected by historic metal mining in the western United States. The stream is devoid of fish primarily because of high metal concentrations in the water (e.g., copper and zinc) and has large amounts of settled iron oxyhydroxide solids that coat the streambed. The NFCC is part of the Central City/Clear Creek Superfund site, and remediation plans are being implemented that include treatment of three of the main point‐source inputs and cleanup of some tailings and waste rock piles. This article examines dissolved (0.45‐μm filterable) concentrations of cadmium, copper, and zinc following several potential remediation scenarios, simulated using a reactive transport model (WASP4/META4). Results from modeling indicate that for cadmium, remediation of the primary point‐source adit discharges should be sufficient to achieve acute and chronic water‐quality standards under both high‐ and low‐flow conditions. To achieve standards for copper and zinc, however, the modeling scenarios suggest that it may be necessary to treat or remove contaminated streambed sediments in downstream reaches, as well as identify and treat nonpoint sources of metals. Recommendations for improvements to the model for metal transport in acid‐mine drainage impacted streams are made. These recommendations are being implemented by the U.S. Environmental Protection Agency. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
A huge commercial environmental industry, currently estimated at some $130 billion in size in the United States alone, has sprung up to manage and remediate environmental problems. Hundreds of innovative remediation technologies are being developed under EPA's SITE program, which has provided R&D funding for more than 100 new treatment technologies. Despite the obvious demand, numerous regulatory, marketing, technical, and financial barriers have impeded progress in the field of remediation technology development. Developers of remediation technologies are faced with a significant challenge to overcome these barriers and successfully bring a technology to market. This article examines the barriers to technology development and offers strategic planning alternatives for long-term economic success and commercial viability of remediation technologies.  相似文献   

6.
Biological and physicochemical approaches were utilized in a treatment train for acid mine dis charge (AMD) waters. Anaerobic bioreactors, chemical precipitation reactors, and biopolymer chelation reactors, operated in static, semicontinuous, and continuous flow modes, removed significant quantities of metals and sulfates associated with AMD water. Static tests indicated accept able copper removal via precipitation by generation of hydrogen sulfide in anaerobic reactors. However, low pH affected the biopolymer coating in the chelation reactor, resulting in loss of bed surface. Corrections of AMD to pH > 7 resulted in some metal precipitationprior to biopolymer treatment. A series of static semicontinuous tests at pH 5.0 provided improved metal and sulfate removal. Copper (Cu+) was reduced to trace concentrations, while manganese (Mn+), although reduced, proved to be the most recalcitrant of the metals. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
Over the past few years, there has been a greater study and understanding of the application of phytoremediation to remediate contaminated soil. The enhancement of phytoaccumulation of heavy metals—zinc (Zn), cadmium (Cd), arsenic (As), and selenium (Se)—in plants has been shown by inoculation of roots using arbuscular mycorrhizal fungi (AMF). This article presents the results of in vitro lab experiments conducted to verify the effects of AMF ( Glomus intraradices) hyphae on speciation of essential Zn and nonessential Cd heavy metals in order to change these metals from a water‐ insoluble carbonate to a soluble and phytoavailable form. Results show that in the presence of heavy metals in a nonavailable form to plants, endomycorrhizal hyphae can change the metal from carbonate to a water‐ soluble species. This phenomenon is more apparent with a nonessential (Cd) than with an essential metal (Zn). Zn saturation is reached in the G. intraradices colonized roots at around 400 ppm, independently of initial ZnCO3 concentrations. Cd saturation is not reached; in the lower Cd treatment, the plant/media metal ratio is 3:1, and in the higher treatment, the ratio is 1:1. © 2005 Wiley Periodicals, Inc.  相似文献   

8.
This article updates previous cost savings studies conducted to evaluate the use of enhanced sludge washing (ESW) of high‐level radioactive waste at the United States Department of Energy Hanford Site. The cost savings estimate was updated using stochastic analysis based on new information from the Independent Review of Hanford High Level Waste Volume and the more recent Tank Waste Remediation System Operation and Utilization Plan. It is estimated that implementation of ESW in the tank waste remediation system (TWRS) at the Hanford Site can save approximately $4.8 billion compared to the use of an alternative, simpler water wash. The simpler water wash dissolution was found to be 85 percent as effective as the ESW dissolution. Further, the updated remediation cost estimate of $4.8 billion savings is uncertain only within ±$1.6 billion at the 95 percent confidence interval. © 2002 Wiley Periodicals, Inc.  相似文献   

9.
COGNIS TERRAMET® soil leaching and Bescorp soil washing systems have been successfully combined to remediate an ammunition test burn area at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, Minnesota. This cleanup is the first in the country to successfully combine these two technologies, and it offers a permanent solution to heavy metal remediation. Over 20,000 tons of soil were treated in the project. The cleaned soil remained on-site, and the heavy metal contaminants were removed, recovered, and recycled. Eight heavy metals were removed from the contaminated soil achieving the very stringent cleanup criteria of <175 ppm for residual lead and achieving background concentrations for seven other project metals (antimony, cadmium, chromium, copper, mercury, nickel, and silver). Initial contaminant levels were measured as high as 86,000 ppm lead and 100,000 ppm copper, with average concentrations over 1,600 ppm each. In addition, both live and spent ordnance were removed in the soil treatment plant to meet the cleanup criteria. By combining soil washing and leaching, COGNIS and Bescorp were able to assemble a process which effectively treats all the soil fractions so that all soil material can be returned on-site, no wastewater is generated, and the heavy metals are recovered and recycled. No hazardous waste requiring landfill disposal was generated during the entire remedial operation.  相似文献   

10.
脱硫废水生化处理初探   总被引:1,自引:0,他引:1  
火电厂烟气脱硫过程产生的废水中污染物主要包括悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属等,燃煤电厂烟气系统增设脱硝装置后,进入脱硫废水的氨氮、总氮含量急剧增加。通过对国内外多个电厂的脱硫废水处理系统运行情况的调研及分析,采用厌氧氨氧化工艺作为废水脱氮方式是可行的。  相似文献   

11.
Leaching of heavy metals in acid mine drainage.   总被引:1,自引:0,他引:1  
Acid mine drainage is one of the most serious environmental problems that the coal and metal mining industry is currently facing. The generation of low pH drainage enhances the dissolution of heavy metals in water. The samples used in this research originated from three pits at mine dumps. In a study reported in this paper, three types of tests; namely static test, kinetic test and column test were conducted to estimate acid generation and acid neutralization reaction rates, and to predict the solubility of metals and their release rates. Static test showed that all samples had a pH of net acid generation (NAG pH) <4, a net acid producing potential (NAPP) >10 kg H2SO4tonne(-1), and a S-content >3%, which can be classified as a high acid-forming capacity. Simulated runoff in the column tests was equivalent to 5-year average rainfall in Indonesia, the resultant leachates showed acidic behaviour (pH < 3.5). Based on the results, it was found that high mobilization of heavy metals (Cr, Cu, Zn, Cd and Pb) takes place under strong acidic conditions (pH approximately equal 2).  相似文献   

12.
Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.  相似文献   

13.
In strategic end-of-life electrical and electronic equipment (EoL EEE) management, it has become important to not only avoid the negative environmental impacts but also enhance the positive effects of secondary resource utilization. This is especially true in emerging countries such as China, where medium- to long-term increases in the amount of EoL EEE generation are projected. This study aims to assess the resource availability potential for EoL EEE recycling based on penetration scenarios for formal and/or informal treatment options in China. We categorized substances contained in EoL television sets and personal computers into environmental, resource, and economic aspects under consideration of product transitions. Barium and copper have a high negative potential impact on human health and/or the ecosystem. Focusing on metals with a high resource potential, the resource availability is assessed under different treatment options using characterization factors identified through a life-cycle impact assessment method, the ReCiPe 2008. The results suggest that copper and lead recycling could alleviate the increase in mining costs of resource utilization. Scenario analysis for penetration of formal and informal recycling options indicated that the difference in the alleviated mining costs between the status quo and short-term transition projections until 2030 corresponds to 2.1–2.4 billion dollars.  相似文献   

14.
Ethylenediaminetetracetic acid (EDTA) is one of the most common chelators used to bind the metal ions in extremely stable complexes in heavy metal contaminated soils and thus to remediate such substrates. EDTA forms water soluble complexes with many metal ions and it is used to release the various metals. In this study, EDTA extraction of copper, chromium, and arsenic from chromated copper arsenate (CCA-C) treated wood was evaluated using batch leaching experiments. CCA-treated wood samples were extracted with eight different concentrations of EDTA for 4, 8, 18, and 24 h at room temperature. Exposing CCA-treated chips and sawdust to EDTA extraction enhanced removal of CCA components compared with extraction by deionized water. Grinding CCA-treated wood chips into 40-mesh sawdust provided greater access to and removal of CCA components. Extraction with 1% EDTA solution for 24 h removed 60% copper, 13% chromium, and 25% arsenic from treated chips. EDTA extraction of treated sawdust samples resulted in 93% copper, 36% chromium, and 38% arsenic removal. CCA leaching from treated wood blocks was also evaluated according to modified AWPA E11-99 standard test method of determining the leachability of wood preservatives. Leaching of CCA components from treated wood blocks with 1% EDTA solution for 14 days caused more copper leaching compared to leaching with deionized water. Leaching with 1% EDTA for 14 days removed 53% copper from the blocks whereas 14% copper was leached from the blocks with deionized water. The results suggest that EDTA extraction removes significant quantities of copper from CCA-treated wood. Thus, EDTA could be important in the remediation of wood waste treated with the newest formulations of organometalic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

15.
A gasoline pipeline owned by Explorer Pipeline Company ruptured leaking methyl tertiary butyl ether (MTBE), a gasoline additive, into a creek and lake that the city of Dallas used as a water source. Because of the contamination, the city had to build a pipeline (nine feet in diameter, over two and three‐quarters of a mile in length, and built in three months) to another lake, at a cost of about $9 million. The volume of the release was estimated at 1.7 million gallons of gasoline containing MTBE at 9 percent per volume. Thousands of soil, water, and groundwater samples were taken to track the MTBE plume as it migrated from the spill site, through almost 30 miles of creek and throughout a lake containing 700,000 acre‐feet (228 billion gallons) of water. Four years after the spill, MTBE remains throughout the groundwater system, primarily in the drainage basin along the almost 30 miles of creek. This article focuses on the detailed tracking of all sampling data and the impact that the ongoing threat of MTBE contamination had on the water supplier. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
Effects of Mine Drainage on Breakdown of Aspen Litter in Mountain Streams   总被引:1,自引:0,他引:1  
Rates of aspen litter breakdown were measured at 40 sites in streams of the Rocky Mountains of Colorado, U.S.A. The sites encompassed a range of effects of mine drainage, from pristine (no effects) to highly stressed. The pH, concentrations of dissolved zinc, and deposition rates of metal oxides (the three main stresses from mine drainage) were measured in each stream. Rates of litter breakdown were estimated from changes in mass of aspen leaves in litterbags. The biological communities associated with litter breakdown also were evaluated by measuring the biomass of shredding invertebrates in litterbags and the rate of microbial respiration on litter. Of the stresses from mine drainage, concentration of zinc and deposition rate of metal oxides were most closely related (negatively) to rate of litter breakdown. Biomass of shredding invertebrates was also negatively related to concentration of dissolved zinc and deposition of metal oxides. Microbial respiration was negatively related to deposition rate of metal oxides and positively related to concentration of nutrients. Both shredder biomass and microbial respiration were positively related to litter breakdown rate and, together, accounted for 79% of its variation. Recovery of litter breakdown in streams affected by mine drainage requires remediation that limits both dissolved and deposited metals.  相似文献   

17.
This article presents an analysis of the prospective costs of RCRA corrective action for private, nonfederal facilities. Two data bases developed by Research Triangle Institute and a remedial action cost model developed by CH2M Hill provide the foundation for this work. The methodology has two components, a remedial action knowledge base and a discrete-state Monte Carlo analysis. Under base case assumptions, it is estimated that the total costs of RCRA corrective action will be $240 billion, with a 5 percent chance the costs will be less than $170 billion and a 5 percent chance the costs will be more than $377 billion.  相似文献   

18.
During and after mining activities acidic waters containing high amounts of heavy metals and sulfate often occur. In addition to precipitation processes, water purification is also possible with the help of sulfate-reducing bacteria (SRB). A mixed culture of SRB was adapted to methanol as a cheap carbon source. In order to receive high sulfate-reduction rates immobilization on porous materials proved to be advantageous. Continuous laboratory experiments based on immobilized SRB were carried out with original water from a lignite mining site reaching sulfate-reducing rates up to 132 mg SO4(2-)/(1 h). Based on these results a process for the treatment of such waters was designed. Heavy metals are removed by recycling sulfide containing effluent, excess sulfide can be oxidized to elemental sulfur by addition of hydrogen peroxide. The plant with a 3.9 m3 bioreactor with immobilized SRB was constructed at the mine site. This pilot plant was operated successfully for some months. The removal of heavy metals was close to 100%, the pH of the acidic water increased from 3.0 to 6.9. The sulfate-reducing rate again reached 134 mg SO4(2-)/(1 h). The production of sulfur from the excess sulfide is possible.  相似文献   

19.
姚猛  凌二锁  徐知雄  黄斌 《化工环保》2019,39(6):713-718
针对成品油库污水排放量不规律,水中难降解有机物和石油类含量高的问题,采用"预处理+生化处理+深度处理"三级处理工艺对油库原污水处理装置进行改造。改造后,预处理单元包括调节池、四级隔油池和溶气气浮机,将原一级隔油池改造为调节池,有效解决了油库短时间大量排水对隔油池的冲击;生化处理单元包括水解酸化池和内循环三相生物塔,在提高污水可生化性的基础上利用新型高效好氧污水处理装置对水中有机污染物进行有效去除;深度处理单元利用臭氧催化氧化塔和内循环曝气生物滤池对生化处理单元难以去除的有机污染物进行处理。经该组合工艺处理后,水中COD和石油类去除率分别达到97.5%和96.0%,处理出水各项指标均满足《污水综合排放标准》(GB8978—1996)一级排放标准。  相似文献   

20.
Many Superfund or hazardous waste sites prove to be excellent candidates for remediation using transportable incineration. Transportable incineration has been selected as the alternative of choice to remediate numerous sites throughout the United States. There are a number of firms that provide mobile and transportable incineration equipment and services. A variety of treatment systems are available, including rotary kilns, fluidized beds, and infrared incinerators. Roy F. Weston, Inc., has been instrumental in the development, design, permitting, construction, performance testing, and operation of hazardous and toxic waste thermal treatment systems. Weston owns and operates two high-temperature transportable incineration systems (TISs). The first system is Weston's seven-ton-per-hour (tph) TIS-5. The second is the TIS-20, with a design capacity of up to 30 tph. These units are typical rotary kiln incinerators, the most flexible, adaptable type of incineration unit. This article discusses Weston's use of these incinerators to remediate soils at sites contaminated with polychlorinated biphenyls (PCBs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号