首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
Nanotechnology application to contaminated site remediation, and especially the use of nanoscale zero‐valent iron particles to treat volatile organic compound (VOC)‐impacted groundwater, is now recognized as a promising solution for cost‐effective in situ treatment. Results obtained during numerous pilot tests undertaken by Golder Associates between 2003 and 2005 in North America (United States and Canada) and Europe have been used to present a synthetic cross‐comparison of technology dynamics. The importance of a comprehensive understanding of the site‐specific geological, hydrogeological, and geochemical conditions, the selection of appropriate nanoscale particles, the importance of monitoring geochemical parameters during technology application, and the potential of nanoparticle impact on microbial activity are discussed in this article. The variable technology dynamics obtained during six pilot tests (selected among numerous other tests) are then presented and discussed. © 2006 Wiley Periodicals, Inc.  相似文献   

3.
The U.S. Department of Energy is conducting a project to accelerate remediation through the use of monitored natural attenuation and enhanced attenuation for chlorinated ethenes in soils and groundwater. Better monitoring practices, improved scientific understanding, and an advanced regulatory framework are being sought through a team effort that engages technology developers from academia, private industry, and government laboratories; site cleanup managers; stakeholders; and federal and state regulators. The team works collaboratively toward the common goals of reducing risk, accelerating cleanup, reducing cost, and minimizing environmental disruption. Cutting‐edge scientific advances are being combined with experience and sound environmental engineering in a broadly integrated and comprehensive approach that exemplifies socalled “third‐generation R&D.” The project is potentially a model for other cleanup activities. © 2004 Wiley Periodicals, Inc.  相似文献   

4.
反硝化在土壤及地下水中的净化作用   总被引:1,自引:0,他引:1  
综述了土壤及地下水系统中反硝化作用的研究进展,详细地介绍了反硝化作用的原理和机制,用以防治地表水和地下水的污染.  相似文献   

5.
6.
7.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
9.
The Monitored Natural Attenuation (MNA) Forum is published as a column in each issue of Remediation. The format typically includes one or two questions related to MNA with responses from several MNA Panel members. This column highlights MNA topics discussed at a breakfast held in support of the MNA Forum. It includes thoughts from various MNA Panel members and other environmental professionals who attended the breakfast on the “state of the practice.” © 2005 Wiley Periodicals, Inc.  相似文献   

10.
11.
The remediation of groundwater contaminated with waterborne pathogens, in particular with viruses, is based on their probable or actual ability to be transported from the source of origin to a point of withdrawal while maintaining the capacity to cause infections. The transport is often associated with both the unsaturated and saturated subsurface composed of varying geological settings with commensurate hydrogeological variability. Included among the most important hydrogeological factors that can be used to evaluate viral transport are the flux of moisture in the unsaturated zone, the media through which the particles travel, the length of the flow path, and the time of travel. With respect to the movement and inactivation of viruses in the subsurface, the vadose zone can provide an effective barrier for movement into groundwater and for the protection of downgradient points of withdrawal and use. Models developed to predicate viral transport in soil and groundwater are introduced, including screening models and more sophisticated predictive numerical models. As evidenced by the exponential growth of virus transport research in the literature, as well as a continuing interest in human health, the subject will continue to be one of critical importance to professionals active in the development, treatment, and conveyance of groundwater in the future. © 2005 Wiley Periodicals, Inc.  相似文献   

12.
Remediation developed a Sustainable Remediation Panel in the Summer 2009 issue, which featured the Sustainable Remediation Forum White Paper. The panel is composed of leaders in the field of sustainable remediation who have volunteered to provide their opinions on difficult subjects related to the topic of how to integrate sustainability principles into the remediation practice. The panel's opinions are provided in a question‐and‐answer format, whereby selected experts provide an answer to a question. This issue's question is provided below, followed by opinions from five experts in the remediation field.
相似文献   

13.
Active sediment caps are being considered for addressing contaminated sediment areas in surface‐water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study area of the Anacostia River in Washington, D.C. The cap remained physically stable, demonstrated the ability to divert groundwater flow, and was recolonized with native organisms after 30 months of monitoring following cap placement. However, the long‐term performance of active caps associated with harsh environmental conditions, hydrogeological settings, and subsurface gas production needs to be further evaluated. © 2008 Wiley Periodicals, Inc.  相似文献   

14.
15.
This article focuses on the results of a delineation of radioactive contaminants using expedited field characterization equipment at the Department of Energy's Savannah River Site in South Carolina. The objective of the study was to delineate a potential contamination area in the TNX Inner Swamp using cost‐effective field sampling equipment that would give results in a timely manner. The expedited field characterization equipment used was the In Situ Object Counting System (ISOCS) and the Model 935 Surveillance and Measurement System (SAM 935). The study involved an area of approximately 200 acres with 89 surveyed locations. Originally, the contaminant of concern was thorium‐232 because of the health risk to future on‐site workers. As the fieldwork progressed, there were no exceedances in thorium‐232 activities; however, there was one slight exceedance of uranium‐238. The delineation was established from using the ISOCS and SAM 935 sampling equipment in addition to soil sampling from the 0‐ to 1‐foot interval. There was a strong correlation in the analytical data from both the ISOCS and SAM 935 measurements. Thus, this type of sampling characterization is beneficial for determining the extent of contamination at hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
19.
Gentle remediation options (GRO) are risk management strategies/technologies that result in a net gain (or at least no gross reduction) in soil function as well as risk management. They encompass a number of technologies, including the use of plant (phyto‐), fungi (myco‐), and/or bacteria‐based methods, with or without chemical soil additives or amendments, for reducing contaminant transfer to local receptors by in situ stabilization, or extraction, transformation, or degradation of contaminants. Despite offering strong benefits in terms of risk management, deployment costs, and sustainability for a range of site problems, the application of GRO as practical on‐site remedial solutions is still in its relative infancy, particularly for metal(loid)‐contaminated sites. A key barrier to wider adoption of GRO relates to general uncertainties and lack of stakeholder confidence in (and indeed knowledge of) the feasibility or reliability of GRO as practical risk management solutions. The GREENLAND project has therefore developed a simple and transparent decision support framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GRO appear to be a viable option. The framework is presented as a three phased model or Decision Support Tool (DST), in the form of a Microsoft Excel‐based workbook, designed to inform decision‐making and options appraisal during the selection of remedial approaches for contaminated sites. The DST acts as a simple decision support and stakeholder engagement tool for the application of GRO, providing a context for GRO application (particularly where soft end‐use of remediated land is envisaged), quick reference tables (including an economic cost calculator), and supporting information and technical guidance drawing on practical examples of effective GRO application at trace metal(loid) contaminated sites across Europe. This article introduces the decision support framework. ©2015 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号