首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Wetland restoration activities may disturb shallow ground‐water flow dynamics. There may be unintentional sources of water flowing into a constructed wetland that could compromise the long‐term viability of a wetland function. Measurement of naturally‐occurring isotopes in the hydrosphere can provide an indication of provenance, flow paths or components, and residence times or ages of wetland ground‐water flow systems. Hydraulic head measurements may not provide sufficient detail of shallow flow disturbances and can be complemented by analyzing isotopes in waters flowing through the wetland. Two north‐central Indiana wetlands in the Kankakee watershed are being studied to determine the adequacy of wetland restoration activities. The native LaSalle wetland and the restored Hog Marsh wetland have contrasting ground‐water flow regimes. The conservative water isotopes 18O, 2H, and 3H, and selected solute isotopes 13C, 14C, 15N, 34S, 87Sr, and 206–208Pb, demonstrate the complexity of ground‐water flow in Hog Marsh compared to the established flow regime at the LaSalle wetland.  相似文献   

2.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

3.
ABSTRACT: Carbon content was measured in sediments deposited in 58 small reservoirs across the United States. Reservoirs varied from 0.2 to 4000 km2 in surface area. The carbon content of sediment ranged from 0.3 to 5.6 percent, with a mean of 1.9 ± 1.1 percent. No significant differences between the soil and sediment carbon content were found using a paired t-test or ANOVA. The carbon content of sediments in reservoirs was similar to the carbon content of surface soils (0–10 cm) in the watershed, except in watersheds with shrub or steppe (desert) vegetation. Based on the sediment accumulation rates measured in each reservoir, the calculated organic carbon accumulation rates among reservoirs ranged from 26 to 3700 gC m-2yr-1, with a mean of 675 ± 739 gC m-2yr-1. The carbon content and accumulation rates were highest in sediments from grassland watersheds. High variability was found in carbon content, carbon accumulation, and sediment accumulation rates due to individual watershed and reservoir characteristics rather than to any broad physiographic patterns. The carbon accumulation rates in these reservoir sediments indicate that reservoir sediments could be a significant sink for organic carbon.  相似文献   

4.
ABSTRACT: Gold was discovered in Georgia in 1829 and mined until about 1940 in the Dahionega Gold Belt of the north Goorgia Piedmont. Streams there are characterized by gravel beds and fine sandy to silty banks. Historical mining-related alluvium is clearly distinguished from prehistoric alluvium because it is contaminated with mercury (Hg), which was used by miners to amalgamate gold. Mercury concentrations in historical floodplain sediments range from 0.04 to 4.0 mg kg?1, exceeding background (0.04 mg kg1) by as much as two orders of magnitude near the core of the mining district and decreasing in the downstream direction. Low levels (≤ 0.1 mg kg1) of Hg are established within about 10–15 km from the source mines. The mercury-contaminated sediment exceeds sediment quality guidelines set by many agencies, and is a significant nonpoint source for mercury pollution. Hydraulic mining of saprolite, which began in 1868, and cutting of forests associated with mining and settlement caused unusually rapid sedimentation (1–3 cm yr?l) and floodplain aggradation in the region. After mining ceased, streams adjusted by downcutting and forming an historical-age terrace. A new floodplain is currently being formed as streams migrate lateraily and erode the mining-related sediment of the historical terrace. High magnitude floods are contained within the confines of the historical terrace, thus limiting quantities of over-bank sedimentation, causing channel bank erosion, and transmitting high sediment yields to reservoirs in the region.  相似文献   

5.
ABSTRACT: Recent studies suggest that waste generation from the freshwater phase of Atlantic salmon (Salmo salar L.) production varies considerably on an annual basis. A fish farm on the West Coast of Scotland was visited regularly during a two-year period to determine inflow and outflow water quality. Waste output budgets of suspended solids (SS), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), total ammonia nitrogen (TAN = NH3+NH4+), dissolved reactive phosphorus (DRP) and total phosphorus (TP) were produced. The annual waste loadings obtained were 71 kg TN t fish?1 yr?1 (one year of data only), 10.9–11.1 kg TP t fish?1 yr?1, 1.2–2.1 kg DRP t fish?1 yr?1, 422–485 kg BOD5 t fish?1 yr?1, 327–337 kg SS t fish?1 yr?1, and 30–35 kg TAN-N t fish?1 yr?1. Simple linear regression models relating waste parameter production to water temperature and feeding regime were developed. When compared to existing data for other salmonid production systems, greater ranges of daily waste loadings were observed. Wide variations in concentrations of these parameters during a daily cycle were also observed, suggesting that mass balance estimates of waste production will provide more robust estimates of waste output than frequent monitoring of outflow water quality.  相似文献   

6.
Loss of Louisiana's coastal wetlands has reached catastrophic proportions. The loss rate is approximately 150 km2/yr (100 acres/day) and is increasing exponentially. Total wetland loss since the turn of the century has been almost 0.5 million ha (1.1 million acres) and represents an area larger than Rhode Island. The physical cause of the problem lies in man's attempts to control the Mississippi River's flooding, while enhancing navigation and extracting minerals. Levee systems and control structures confine sediments that once nourished the wetlands to the river channel. As a consequence, the ultimate sediment deposition is in deep Gulf waters off the Louisiana coast. The lack of sediment input to the interdistributary wetlands results in an accretion deficit. Natural and human-induced subsidence exceeds accretion so that the wetlands sink below sea level and convert to water. The solution is to provide a thin veneer of sediment (approximately 0.6 cm/yr; an average of 1450 g m?2 yr?1) over the coastal marshes and swamps and thus prevent the submergence of vegetation. The sediment source is the Mississippi River system. Calculations show that 9.2% of the river's annual suspended sediment load would be required to sustain the deltaic plain wetlands. It should be distributed during the six high-water months (December–June) through as disaggregated a network as possible. The problem is one of distribution: how can the maximum acres of marsh be nourished with the least cost? At present, the river is managed through federal policy for the benefit of navigation and flood control. A new policy structure, recognizing the new role for the river-sediment distribution, is recommended.  相似文献   

7.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

8.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   

9.
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha?1 yr?1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3? leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha?1 yr?1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha?1 yr?1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha?1 yr?1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.  相似文献   

10.
ABSTRACT: The biogeochemistry of a coastal old-growth forested watershed in Olympic National Park, Washington, was examined. Objectives were to determine: (1) concentrations of major cations and anions and dissolved organic C (DOC) in precipitation, throughfall, stemflow, soil solution and the stream; (2) nutrient input/output budgets; and (3) nutrient retention mechanisms in the watershed. Stemilow was more acidic (pH 4.0–4.5) than throughfall (pH 5.1) and precipitation (pH 5.3). Organic acids were important contributors to acidity in throughfall and stemflow and tree species influenced pH. Soil solution pH averaged 6.2 at 40 cm depth. Stream pH was higher (7.6). Sodium (54.0 μeq L-1) and Cl (57.6 μeq L?1) were the dominant ions in precipitation, reflecting the close proximity to the ocean. Throughfall and stemflow were generally enriched in cations, especially K. Cation concentrations in soil solutions were generally less than those in stemilow. Ion concentrations increased in the stream. Dominant ions were Ca (759.7 μeq L?1), Na (174.4 μeq L?1), HCO3 (592.0 μeq L?1), and SO4 (331.5 μeq L?1) with seasonal peaks in the fall. Bedrock weathering strongly influenced stream chemistry. Highest average NO3 concentrations were in the stream (5.2 μeq L?1) with seasonal peaks in the fall and lowest concentrations in the growing season. Nitrogen losses were similar to inputs; annual inputs were 4.8 kg/ha (not including fixation) and stream losses were 7.1 kg/ha. Despite the age and successional status of the forest, plant uptake is an important N retention mechanism in this watershed.  相似文献   

11.
The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha?1 year?1 ($240–$350 ac?1 year?1). Expressed in the context of “treatment area” (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24–$35 ac?1). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg?1, phosphorus retained costs between $6.97 and $10.25 kg?1, and nitrogen retained costs between $1.59 and $2.34 kg?1. Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.  相似文献   

12.
Recently, the concept of pollution-safe cultivars (PSCs) was proposed to minimize the influx of pollutants to the human food chain. Variations in lead (Pb) uptake and translocation among Chinese cabbage (Brassica pekinensis L.) cultivars were investigated in a pot-culture experiment and a field-culture experiment to screen out Pb-PSCs for food safety. The results of the pot-culture experiment showed that shoot Pb concentrations under two Pb treatments (500 and 1500 mg kg?1) varied significantly (p < 0.05) between cultivars, with average values of 3.01 and 6.87 mg kg?1, respectively. Enrichment factors (EFs) and translocation factors (TFs) in cultivars were less than 0.50 and varied significantly (p < 0.05) between cultivars. Shoot Pb concentrations in 12 cultivars under treatment T1 (500 mg kg?1) were lower than 2.0 mg kg?1. The field-culture experiment further confirmed Qiuao, Shiboqiukang and Fuxing 80 as Pb-PSCs, which were suitable to be cultivated in low-Pb (<382.25 mg kg?1) contaminated soils and harmless to human health as foods.  相似文献   

13.
ABSTRACT: The ability to predict how streams and wetlands retain phosphorus (P) is critical to the management of watersheds that contribute nutrients to adjacent aquatic systems such as lakes. Field and laboratory experiments were conducted to determine the P assimilatory capacity of a stream (Otter Creek) in the Taylor Creek/Nubbin Slough Basin located north of Lake Okeechobee, Florida. Dominant soils in this basin are sandy Spodosols; landuse is primarily dairy farms and beef cattle pastures. Estimates of P assimilation show that sediments assimilate approximately 5 percent of the P load. Phosphorus assimilation rates in the stream were estimated using first-order relationships based on the total P concentration of the water column as a function of distance from the primary source. This method assumes minimal lateral inputs. Stream lengths required for one turnover in P assimilation were estimated to be in the range of 3–16 km. Laboratory studies using intact sediment cores indicated a P assimilation rate of 0.025 m day?1, and equilibrium P concentration of 0.16 ± 0.03 mg L?1 in the water column. Dissolved P concentration gradients in the sediments showed upward flux of P at water column P concentration of <0.16 mg L?1. Approximately 56–77 percent of the P assimilated in the above-ground vegetation during active growth was released or translocated within six months of senesence, suggesting short-term storage in above-ground vegetation. Bottom sediments and recalcitrant detrital plant tissue provide for long-term P assimilation in the creek. Although stream sediments have the potential to adsorb P, high flow rate and low contact period between water and sediment limits this process.  相似文献   

14.
ABSTRACT: The spatial changes in abiotic and biotic variables from riverine to lacustrine areas characterized by the river-lake concept of reservoir function was applied to the Tomhannock Reservoir, Rensselaer County, New York. To identify these longitudinal gradients, a two-year investigation (May 1991 to October 1992) was conducted to measure primary productivity, nutrient concentrations, chlorophyll α and phytoplankton biomass at three locations in the 705-ha water supply reservoir. Emphasis was placed on the measurement of primary production using the carbon-14 artificial incubator (photosynthetron) technique. The average annual production in 1992 was 247.3 gm?2 245 d?1, ranging from 52 to 2677 mg C m?2. Mean alphaB (assimilation efficiency), PBm (assimilation number), and Ik (saturation irradiance) were 4.40 mg C mgChl?1 E?1 m?2, 3.82 mg C mgChl?1 h?1, and 236.5 μE m?2 s?1, respectively. Neither seasonal nor spatial variability of these photosynethetic parameters were observed. Except for Secchi depth, distinct longitudinal zones from river inflow to darn were not statistically demonstrated in the Tomhannock Reservoir. Mean extinction coefficient, chlorophyll α and total phosphorus concentrations decreased; Secchi transparency and phytoplankton biomass increased; while primary productivity and dissolved inorganic nitrogen concentration remained the same from headwater to darn. These baseline data will be used to assess the future effectiveness of best management practices (BMPs) recently instituted on selected watershed farmland in an attempt to reduce the detrimental impact of agricultural activities on drinking water quality.  相似文献   

15.
ABSTRACT: The Powder River Basin in Wyoming has become one of the most active areas of coalbed methane (CBM) development in the western United States. Extraction of methane from coalbeds requires pumping of aquifer water, which is called product water. Two to ten extraction wells are manifolded into one discharge point and product water is released into nearby unlined holding ponds. The objective of this study was to evaluate the chemistry, salinity, and sodicity of CBM product water at discharge points and associated holding ponds as a function of watershed. The product water samples from the discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. These samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), sulfate (SO42‐), and chloride (C1‐). From the chemical data, practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated for the CBM discharge water and pond water. The pH, EC, TDS, alkalinity, Na, Ca, Mg, K, SARp, and SARt of CBM discharge water increased significantly moving north from the CHR watershed to the LPR watershed. CBM discharge water in associated holding ponds showed significant increases in EC, TDS, alkalinity, Na, K, SARp, and SARt moving north from the CHR to the LPR watershed. Within watersheds, the only significant change was an increase in pH from 7.21 to 8.26 between discharge points and holding ponds in the LPR watershed. However, the LPR and BFR exhibited larger changes in mean chemistry values in pH, salinity (EC, TDS), and sodicity (SAR) between CBM product water discharges and associated holding ponds than the CHR watershed. For instance, the mean EC and TDS of CBM product water in LPR increased from 1.93 to 2.09 dS/m, and froml,232 to 1,336 mg/L, respectively, between discharge and pond waters. The CHR exhibited no change in EC, TDS, Na, or SAR between discharge water and pond water. Also, while not statistically significant, mean alkalinity of CBM product water in BFR and LPR watersheds decreased from 9.81 to 8.01 meq/L and from 19.87 to 18.14 meq/L, respectively, between discharge and pond waters. The results of this study suggest that release of CBM product water onto the rangelands of BFR and LPR watersheds may precipitate calcium carbonate (CaCO3) in soils, which in turn may decrease infiltration and increase runoff and erosion. Thus, use of CBM product water for irrigation in LPR and BFR watersheds may require careful planning based on water pH, EC, alkalinity, Na, and SAR, as well as local soil physical and chemical properties.  相似文献   

16.
Inter-seasonal studies on the trace metal load of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River were conducted between 2003 and 2004. The impact of anthropogenic activities especially industrial effluent, petroleum related wastes, gas flare and episodic oil spills on the ecosystem are remarkable. Trace metals analyzed included cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), vanadium (V) and zinc (Zn). Sediment particle size analysis revealed that they were characteristically psammitic and were predominantly of medium to fine grained sand (>73%), less of silt (<15%) and clay (<10%). These results correlated with low levels of trace elements such as Pb (0.03 ± 0.02 mg kg−1), Cr (0.22 ± 0.12 mg kg−1), Cd (0.05 ± 0.03 mg kg−1), Cu (0.04 ± 0.02 mg kg−1) and Mn (0.23 ± 0.22 mg kg−1) in the sediment samples. This observation is consistent with the scarcity of clayey materials known to be good scavengers for metallic and organic contaminants. Sediments indicated enhanced concentration of Fe, Ni and V, while other metal levels were relatively low. The concentrations of all the metals except Pb in surface water were within the permissible levels, suggesting that the petroleum contaminants had minimal effect on the state of pollution by trace metals in Iko River. Notably, the pollutant concentrations in the sediments were markedly higher than the corresponding concentrations in surface water and T. fuscatus tissues, and decreased with distance from point sources of pollution.  相似文献   

17.
This investigation represents the first environmental diagnosis of the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from a tropical mangrove in Fortaleza, northeastern Brazil. Sediment cores from six sampling stations in the Cocó and Ceará Rivers were retrieved in June-July 2006 to determine 17 priority PAHs. The total PAH concentrations (ΣPAHs) ranged from 3.04 to 2234.76 μg kg?1(Cocó River) and from 3.34 to 1859.21 μg kg?1 (Ceará River). These levels are higher than those of other cities with more industrial development. PAH concentrations did not reach probable effect levels (PELs). However, from 4.5 to 87.5% of individual PAH concentrations can occasionally cause adverse biological effects for aquatic organisms. The PAH molecular ratios indicate that the PAHs in the sediment core were derived mainly from petroleum, wood, and charcoal combustion (pyrogenic source), and that atmospheric deposition and urban runoff may serve as important pathways for PAH input to the sediment. Clearly, the ΣPAHs in sediments collected in the Cocó and Ceará Rivers indicate that ongoing pollution is more severe than past pollution.  相似文献   

18.
The occurrence of butyltin (BT) compounds in more than 50 recent sediment samples of the Iberian Peninsula, collected in the harbours of the western Mediterranean Sea (Spain) and the North Atlantic Ocean (Portugal), including domestic and industrial sewage disposal sites, has been assessed. The highest levels of tributyltin (TBT) (7673 μg kg?1 dry wt.) were detected in commercial harbours associated with inputs from large vessels. However, relatively high TBT values (about 2150 μg kg?1 dry wt.) were also detected in fishing and recreational boating areas. Spanish marinas and harbours are more polluted in terms of TBT (5–7673 μg kg?1 dry wt.) compared to those in Portugal (4–12 μg kg?1 dry wt.). Generally, the Mediterranean sediments show a BT distribution characterized by the predominance of TBT over the degradation products dibutyl (DBT) and monobutyltin (MBT), indicating the presence of recent inputs, in contrast to the Portuguese coastal distribution. Calculation of butyltin degradation indexes (BDI) confirmed a different trend, depending on the area. Furthermore, a comparative study of the occurrence of BT in different sewage sludge disposal sites shows that domestic primary sewage sludge effluents can contribute to coastal BT pollution, but to a lesser extent when compared with harbours. Historical trends (1995–2003) for Barcelona harbour reveal that BT regulations on the use of TBT-based antifouling paints have not been fully effective. Finally, a comparison against the existing sediment quality guidelines (SQGs) indicated that acute toxic effects could only be expected for TBT in some Mediterranean harbours; conversely, in every North Atlantic Ocean station, a lesser environmental threat for the harbour benthic community is expected.  相似文献   

19.
ABSTRACT: Data were developed to determine the quality of water and bottom sediments in the Trinity River, and the mobility of various contaminants when bottom sediments were mixed with the river water under simulated dredging conditions. Thirteen sampling sites were selected. A number of chemical tests including heavy metals and pesticides were conducted on river water, elutriates, and bottom sediments. Statis bioassays using Daphnia magna were conducted on river water and elutriates. Results indicated that the river in the upper reach is grossly polluted due to discharge of waste water effluents from several large treatment plants. High concentrations of nitrogen, phosphorus, organic carbon, COD, heavy metals, and pesticides were found in water and bottom sediments. The concentrations of most of these pollutants exceeded the EPA recommended limits. Elutriation gave no consistent results, perhaps because of release or uptake of contaminants from the sediments. High mortality of D. magna were also recorded in the upper reach of the river. The quality of water and bottom sediments gradually improved in lower reaches.  相似文献   

20.
ABSTRACT: In North America the four successive winters from 1974-1975 through 1977–1978 were very different from each other in terms of atmospheric circulation and resulting surface weather conditions. The first year of the sequence there was a near normal circulation pattern. The following years were characterized by the gradual amplification of an upper atmosphere ridge over the West Coast coupled with an eastward displacement of a long-wave trough east of the Rocky Mountains. These changes in circulation brought below normal temperatures to the Midwest, below normal precipition and increasing snowfall which reached record levels in February 1978. These atmospheric changes brought about changes in the flow of the Kankakee River-Total runoff in the winter half-year dropped as precipitation and temperatures dropped; there was a marked retarding of winter runoff and the yield of the watershed increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号