共查询到20条相似文献,搜索用时 0 毫秒
1.
Stephen J. Gaffield Kenneth W. Potter Lizhu Wang 《Journal of the American Water Resources Association》2005,41(1):25-36
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature. 相似文献
2.
D.Q. Kellogg A.J. Gold P.M. Groffman M.H. Stolt K. Addy 《Journal of the American Water Resources Association》2008,44(4):1024-1034
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions. 相似文献
3.
Brian G. Katz Rodney S. DeHan Joshua J. Hirten John S. Catches 《Journal of the American Water Resources Association》1997,33(6):1237-1254
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River. 相似文献
4.
David P. Groeneveld Richard H. French 《Journal of the American Water Resources Association》1995,31(3):505-514
ABSTRACT: Control of emergent aquatic plants such as tule (Scirpus acutus Muhl.; Bigel.) is of direct interest to managers of surface waters in Western North America. Where conditions of water velocity and depth occur that permit this and similar species to colonize and grow, their clonal habit may restrict, or even block, open channels within several seasons after their establishment. Fortunately, sufficient flow depth and velocity naturally prevent these plants from growing into and blocking channels. We investigated physical constraints for tule stem growth with the ultimate intent to apply this knowledge in rehabilitating 60 miles of the diverted Owens River in Eastern California, presently choked with emergent growth. Bending stress resulting from hydrodynamic drag on tule stems was found to induce lodging; permanent deformation and consequent loss of function. The depth-velocity envelope describing this process (at 95 percent confidence) is uD/d= 12.8 where u = average velocity acting upon the stem (m/s), D = local depth of flow (m), and d = tule stem diameter at the point of attachment (m). Maintaining a discharge or reconfiguring a channel so this critical depth-velocity-stem diameter envelope is exceeded (predictable using flow models) through the summer growing period should prevent encroachment into an active channel. 相似文献
5.
Mingteh Chang Steven P Watters Alexander K Sayok 《Journal of the American Water Resources Association》1989,25(2):327-333
ABSTRACT: Ten topographic analysis methods were employed to estimate watershed mean slopes for 13 small forested watersheds (32 to 131 mi2) in East Texas. Of the ten methods employed, the mean slope curve is the most accurate but also the most tedious and laborious one. The method can be simplified by measuring only the lengths of five contours and the areas between these contours within the watershed with little loss of its accuracy. Watershed slopes estimated by the contour length method, the grid contour method, the systematic slope sampling method, and the simplified contour length method are satisfactory for general purposes and relatively simple. The watershed circumference-stream length method, the length-width axis method, the Justin method, and the regression plane method are not suitable for estimating watershed slopes in East Texas without modification. 相似文献
6.
L. Joseph. Bachman Patrick J. Phillips 《Journal of the American Water Resources Association》1996,32(4):779-791
ABSTRACT: Base-flow samples were collected from 47 sampling sites for four seasons from 1990–91 on the Delmarva Peninsula in Delaware and Maryland to relate stream chemistry to a “hydrologic landscape” and season. Two hydrologic landscapes were determined: (1) a well-drained landscape, characterized by a combination of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained landscape, characterized by a combination of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slope. Concentrations of nitrogen were significantly related to the hydrologic landscape. Nitrogen concentrations tended to be higher in well-drained landscapes than in poorly drained ones. The highest instantaneous nitrogen yields occurred in well-drained landscapes during the winter. These yields were extrapolated over the part of the study area draining to Chesapeake Bay in order to provide a rough estimate of nitrogen load from base flow to the Bay and its estuarine tributaries. This estimate was compared to an estimate made by extrapolating from an existing long-term monitoring station. The load estimate from the stream survey data was 5 ± 106 kg of N per year, which was about four times the estimate, made from the existing long-term monitoring station. The stream-survey estimate of base flow represents about 40 percent of the total nitrogen load that enters the Bay and estuarine tributaries from all sources in the study area. 相似文献
7.
HYDROLOGIC LANDSCAPES ON THE DELMARVA PENINSULA PART 1: DRAINAGE BASIN TYPE AND BASE-FLOW CHEMISTRY1
Patrick J. Phillips L. Joseph. Bachman 《Journal of the American Water Resources Association》1996,32(4):767-778
ABSTRACT: The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base-flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well-drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry. 相似文献
8.
Robert M. Lent Marcus C. Waidron John C. Rader 《Journal of the American Water Resources Association》1998,34(2):439-450
ABSTRACT: A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wet. land density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type. 相似文献
9.
Baxter E. Vieux Fekadu G. Moreda 《Journal of the American Water Resources Association》2003,39(4):757-769
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border. 相似文献
10.
S. W. Hostetler 《Journal of the American Water Resources Association》1991,27(4):637-647
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies. 相似文献
11.
S. Lawrence. Dingman Stephen C. Lawlor 《Journal of the American Water Resources Association》1995,31(2):243-256
ABSTRACT: This study systematically develops, validates, and compares alternative approaches for estimating quantiles of the distribution of annual minimum seven-day-average flows (7Q) for ungaged, unregulated drainage basins in New Hampshire and Vermont via regression on map-measurable drainage-basin characteristics. At 47 gaging stations in the region, the hypotheses that 7Q is log normally distributed and serially independent are not rejected, and the regional average spatial correlation is R= 0.35. Step-forward examination of a suite of potential predictor variables revealed that logarithm of drainage area, mean elevation, and fraction of basin covered with sand and gravel deposits are significant predictors of quantiles of 7Q. The regression equations were incorporated into four approaches to estimate the 7Q value with a nonexceedence probability of 0.1, 7Q10. Comparison of observed values and values predicted via a delete-one jackknife resampling validation indicates that one of the approaches gives estimates with acceptable bias and precision, with median relative error of 33 percent and prediction error of 64 percent. This is equivalent to the precision obtainable with only one to two years of gaging records. In spite of this limited precision, the approaches developed herein are useful for predicting 7Q quantiles at ungaged sites. Further improvement in precision will likely be possible only by exploiting the spatial correlation of annual 7Q. 相似文献
12.
Jiansheng Yan Keith R. Smith 《Journal of the American Water Resources Association》1994,30(5):879-890
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988). 相似文献
13.
Jonathan A. Villines Carmen T. Agouridis Richard C. Warner Christopher D. Barton 《Journal of the American Water Resources Association》2015,51(6):1667-1687
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model. 相似文献
14.
Thomas C. Winter 《Journal of the American Water Resources Association》2000,36(2):305-311
ABSTRACT: The vulnerability of wetlands to changes in climate depends on their position within hydrologic landscapes. Hydrologic landscapes are defined by the flow characteristics of ground water and surface water and by the interaction of atmospheric water, surface water, and ground water for any given locality or region. Six general hydrologic landscapes are defined; mountainous, plateau and high plain, broad basins of interior drainage, riverine, flat coastal, and hummocky glacial and dune. Assessment of these landscapes indicate that the vulnerability of all wetlands to climate change fall between two extremes: those dependent primarily on precipitation for their water supply are highly vulnerable, and those dependent primarily on discharge from regional ground water flow systems are the least vulnerable, because of the great buffering capacity of large ground water flow systems to climate change. 相似文献
15.
Robert V. Sobczak Thomas C. Cambareri 《Journal of the American Water Resources Association》2002,38(3):747-757
ABSTRACT: An inverse‐simulation approach is used to determine optimal strategies for developing public water‐supply systems in a shallow, coastal aquifer on the outermost arm of the Cape Cod peninsula in Massachusetts. Typically a forward simulation (or “trial and error”) approach is used to find best pumping strategies, but the chances of finding success with this tact diminish as the number of potential options grows large. Well locations and pumping rates are optimized with respect to: (1) providing sufficient water to areas of water‐quality impairment, (2) minimizing impacts to nearby surface waters, (3) preventing saltwater contamination due to overpumping, and (4) minimizing financial cost of well development. Potential well sites and water‐supply scenarios are separated into “politically‐based” and “resource‐based” categories to gain insight into the degree that pre‐existing political boundaries hinder best management practices. The approach provides a promising tool in transboundary water‐resources settings because it allows stakeholders to find solutions that best meet everyone's goals, as opposed to pursuing options that will create conflict, or are less than optimal. 相似文献
16.
Gerard McMahon Jerad D. Bales James F. Coles Elise M. P. Giddings Humbert Zappia 《Journal of the American Water Resources Association》2003,39(6):1529-1546
ABSTRACT: This paper presents the results of a study on the use of continuous stage data to describe the relation between urban development and three aspects of hydrologic condition that are thought to influence stream ecosystems—overall stage variability, stream flashiness, and the duration of extreme‐stage conditions. This relation is examined using data from more than 70 watersheds in three contrasting environmental settings—the humid Northeast (the metropolitan Boston, Massachusetts, area); the very humid Southeast (the metropolitan Birmingham, Alabama, area); and the semiarid West (the metropolitan Salt Lake City, Utah, area). Results from the Birmingham and Boston studies provide evidence linking increased urbanization with stream flashiness. Fragmentation of developed land cover patches appears to ameliorate the effects of urbanization on overall variability and flashiness. There was less success in relating urbanization and streamflow conditions in the Salt Lake City study. A related investigation of six North Carolina sites with long term discharge and stage data indicated that hydrologic condition metrics developed using continuous stage data are comparable to flow based metrics, particularly for stream flashiness measures. 相似文献
17.
Randall T. Hanson Michael D. Dettinger 《Journal of the American Water Resources Association》2005,41(3):517-536
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions. 相似文献
18.
Stephen P. Opsahl Scott E. Chapal David W. Hicks Christopher K. Wheeler 《Journal of the American Water Resources Association》2007,43(5):1132-1141
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined. 相似文献
19.
Sydney T. Bacchus 《Journal of the American Water Resources Association》2000,36(3):457-481
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach. 相似文献
20.
Michael K. Callahan Mark C. Rains Jason C. Bellino Coowe M. Walker Steven J. Baird Dennis F. Whigham Ryan S. King 《Journal of the American Water Resources Association》2015,51(1):84-98
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites. 相似文献