首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Base-flow samples were collected from 47 sampling sites for four seasons from 1990–91 on the Delmarva Peninsula in Delaware and Maryland to relate stream chemistry to a “hydrologic landscape” and season. Two hydrologic landscapes were determined: (1) a well-drained landscape, characterized by a combination of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained landscape, characterized by a combination of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slope. Concentrations of nitrogen were significantly related to the hydrologic landscape. Nitrogen concentrations tended to be higher in well-drained landscapes than in poorly drained ones. The highest instantaneous nitrogen yields occurred in well-drained landscapes during the winter. These yields were extrapolated over the part of the study area draining to Chesapeake Bay in order to provide a rough estimate of nitrogen load from base flow to the Bay and its estuarine tributaries. This estimate was compared to an estimate made by extrapolating from an existing long-term monitoring station. The load estimate from the stream survey data was 5 ± 106 kg of N per year, which was about four times the estimate, made from the existing long-term monitoring station. The stream-survey estimate of base flow represents about 40 percent of the total nitrogen load that enters the Bay and estuarine tributaries from all sources in the study area.  相似文献   

2.
ABSTRACT: The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base-flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well-drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.  相似文献   

3.
ABSTRACT: The vulnerability of wetlands to changes in climate depends on their position within hydrologic landscapes. Hydrologic landscapes are defined by the flow characteristics of ground water and surface water and by the interaction of atmospheric water, surface water, and ground water for any given locality or region. Six general hydrologic landscapes are defined; mountainous, plateau and high plain, broad basins of interior drainage, riverine, flat coastal, and hummocky glacial and dune. Assessment of these landscapes indicate that the vulnerability of all wetlands to climate change fall between two extremes: those dependent primarily on precipitation for their water supply are highly vulnerable, and those dependent primarily on discharge from regional ground water flow systems are the least vulnerable, because of the great buffering capacity of large ground water flow systems to climate change.  相似文献   

4.
ABSTRACT: A deterministic hydrologic model, encompassing the hydrologic regime and all water uses, is developed by integrating empirical hydrologic relationships. The Brandywine Basin, located in southeastern Pennsylvania and northern Delaware, is used as an example to demonstrate this modeling effort. The basin is divided into 19 subwatersheds to account for the spatial variation of resource characteristics. The output of the model is the response of the hydrologic system to various inputs such as precipitation, land use characteristics and policy decisions. This modeling effort is applicable to watersheds similar to the Brandywine Basin in size, and once the model is developed and validated, can be applied continuously in the management and planning of water resources such as predicting the hydrologic effects of proposed projects and simulating hydrologic information.  相似文献   

5.
ABSTRACT: This paper presents the results of a study on the use of continuous stage data to describe the relation between urban development and three aspects of hydrologic condition that are thought to influence stream ecosystems—overall stage variability, stream flashiness, and the duration of extreme‐stage conditions. This relation is examined using data from more than 70 watersheds in three contrasting environmental settings—the humid Northeast (the metropolitan Boston, Massachusetts, area); the very humid Southeast (the metropolitan Birmingham, Alabama, area); and the semiarid West (the metropolitan Salt Lake City, Utah, area). Results from the Birmingham and Boston studies provide evidence linking increased urbanization with stream flashiness. Fragmentation of developed land cover patches appears to ameliorate the effects of urbanization on overall variability and flashiness. There was less success in relating urbanization and streamflow conditions in the Salt Lake City study. A related investigation of six North Carolina sites with long term discharge and stage data indicated that hydrologic condition metrics developed using continuous stage data are comparable to flow based metrics, particularly for stream flashiness measures.  相似文献   

6.
ABSTRACT: Periodic flood disturbance is a well known controlling factor of in channel and floodplain ecosystem function. However, channel manipulations during the last century have potentially altered hydrologic fluctuations, and thus ecosystem function. We examined temporal river stage hydrology, through autocorrelation analysis, at seven gauges along the Mississippi River to quantify flow periodicity and effects of systematic channel modifications on flow periodicity. Intraannual variation follows a strong one‐year cycle of six months higher flow and six months lower flow for the entire Mississippi River drainage, with precipitation as a driving force. Interannual hydrologic variation differs between the upper and lower river segments. A clear quasi‐biennial oscillation pattern was evident throughout the lower river section. The effect of channel alterations was a decreased magnitude of differences between lower and higher flows. The upper section, however, suggests a 12‐to 14‐year periodicity prior to alterations and a decreased duration of lower flow years following systematic modifications. Interannual variograms clearly depict very different temporal hydrology between the upper Mississippi River and the lower Mississippi River, suggesting the simple transfer of knowledge from one segment to the other oversimplifies the complexity of a large river system.  相似文献   

7.
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model.  相似文献   

8.
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.  相似文献   

9.
Hydrologic response, defined as the annual direct runoff divided by the annual precipitation, was computed for twenty-one watersheds in or near western Massachusetts, using a total of 232 years of hydrologic records. Variability of the results over the period of analysis was greater than is desirable to inspire confidence in the usefulness of the hydrologic response function; however, the results do suggest that the hydrologic response concept, with appropriate refinements, could be applied successfully to the problem of delineating hydrologic provinces and determination of drainage and storage in unregulated watersheds.  相似文献   

10.
ABSTRACT: A “synthetic paired basin” technique that combines hydrologic monitoring and watershed modeling proves to be a useful tool in detecting hydrologic change in creeks draining basins undergoing urbanization. In this approach, measured stream flow following subbasin treatment (a period of urbanization) is compared with flow from a control subbasin over the same time period. The control subbasin is the pretreatment subbasin itself as represented by a well‐calibrated hydrologic model that is input with post‐treatment meteorological data. The technique is illustrated for stream monitoring sites at the outlets of two high‐resource sub‐basins in the Bear Creek basin of King County, Washington. Application of this technique holds promise to provide earlier warning of cumulative, human impacts on aquatic resources and to better inform adaptive watershed management for resource protection.  相似文献   

11.
ABSTRACT: This paper considers the risk of drought and develops drought scenarios for use in the study of severe sustained drought in the Southwestern United States. The focus is on the Colorado River Basin and regions to which Colorado River water is exported, especially southern California, which depends on water from the Colorado River. Drought scenarios are developed using estimates of unimpaired historic streamflow as well as reconstructions of streamflow based on tree ring widths. Drought scenarios in the Colorado River Basin are defined on the basis of annual flow at Lees Ferry. The risk, in terms of return period, of the drought scenarios developed, is assessed using stochastic models.  相似文献   

12.
ABSTRACT: A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wet. land density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.  相似文献   

13.
ABSTRACT: Accurate water balance calculations are essential for water resource and environmental management decisions, but many of the terms used in the equation are difficult to measure. In this study, a method for measuring rates of evapotranspiration and net seepage from a freshwater marsh in southwest Florida is described. The results are compared to evaporation pan estimates as well as to calculations that balanced all the terms in the hydrologic budget. The measured rates of evapotranspiration showed a. distinct seasonal trend ranging from an average high of 0.24 in/d during July 1992 to a low of 0.06 in/d in January 1993. Evapotranspiration rates were higher than Class A evaporation pan measurements during July and August, indicating transpiration by plants exceeded evaporation by pans. Net ground water seepage flowed out of the marsh except during periods of high water table conditions. When all terms in the hydrologic budget were evaluated, the equation balanced on a yearly basis with an error of 2 percent, on a seasonal basis with errors less than 7 percent, but on a monthly basis errors were as great as 30 percent. Total annual rainfall on the marsh was 45 percent of the total marsh hydrologic input and was approximately equal to the loss by evapotranspiration of 41 percent.  相似文献   

14.
ABSTRACT: Ten topographic analysis methods were employed to estimate watershed mean slopes for 13 small forested watersheds (32 to 131 mi2) in East Texas. Of the ten methods employed, the mean slope curve is the most accurate but also the most tedious and laborious one. The method can be simplified by measuring only the lengths of five contours and the areas between these contours within the watershed with little loss of its accuracy. Watershed slopes estimated by the contour length method, the grid contour method, the systematic slope sampling method, and the simplified contour length method are satisfactory for general purposes and relatively simple. The watershed circumference-stream length method, the length-width axis method, the Justin method, and the regression plane method are not suitable for estimating watershed slopes in East Texas without modification.  相似文献   

15.
ABSTRACT: This paper presents an integrated optimal control model that optimizes economic performance of reservoir management in watersheds in which there are significant economic and hydrologic interdependencies. The model is solved using the General Algebraic Modeling System (GAMS). Results show that application of this model to New Mexico's Rio Chama basin can increase total system benefits over historical benefits by exploiting complementarities between hydroelectricity production, instream recreation, and downstream lake recreation.  相似文献   

16.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

17.
ABSTRACT: The effects of changes in the landscape and climate over geological time are plain to see in the present hydrological regime. More recent anthropogenic changes may also have effects on our way of life. A prerequisite to predicting such effects is that we understand the interactions between climate, landscape and the hydrological regime. A semi-distributed hydrological model (SLURP) has been developed which can be used to investigate, in a simple way, the links between landscape, climate and hydrology for watersheds of various sizes. As well as using data from the observed climate network, the model has been used with data from atmospheric models to investigate possible changes in hydrology. A critical input to such a model is knowledge of the links between landscape and climate. While direct anthropogenic effects such as changes in forested area may presently be included, the indirect effects of climate on landscape and vice versa are not yet modeled well enough to be explicitly included. The development of models describing climate-landscape relationships such as regeneration, development and breakup, water and carbon fluxes at species, ecosystem and biome level is a necessary step in understanding and predicting the effects of changes in climate on landscape and on water resources. Forest is the predominant land cover in Canada covering 453 Mha and productivity/succession models for major forest types should be included in an integrated climate-landscape-water simulation.  相似文献   

18.
ABSTRACT: The objective of this work is to determine the effects of extension of a stream network through land drainage activities during the late 1800s on the hydrologic response of a watershed. The Mackinaw River Basin in Central Illinois was chosen as the focus and the pre‐land and post‐land drainage activity hydrologic responses were obtained through convolution of the hill slope and channel responses and compared. The hill slope response was computed using the kinematic wave model and the channel response was determined using the geomorphologic instantaneous unit hydrograph method. Our hypothesis was that the hydrologic response of the basin would exhibit the characteristic effects of settlement (i.e., increases in peak discharges and decreases in times to peak). This, indeed, is what occurred; however, the increase in peak discharges diminishes as scale increases, leaving only the decrease in times to peak. At larger scales, the dispersive effects of the longer hill slope lengths in the pre‐settlement scenario seem to balance the depressive effects of the longer path lengths in the post‐settlement scenario, thus the pre‐settlement and post‐settlement peak discharges are approximately equivalent. At small scales, the dispersion caused by the hill slope is larger in the pre‐settlement case; thus, the post‐settlement peak discharges are greater than the pre‐settlement.  相似文献   

19.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   

20.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号