首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The determination of sediment and nutrient loads is typically based on the collection and analysis of grab samples. The frequency and regularity of traditional sampling may not provide representation of constituent loading, particularly in systems with flashy hydrology. At two sites in the Little Bear River, Utah, continuous, high‐frequency turbidity was used with surrogate relationships to generate estimates of total phosphorus and total suspended solids concentrations, which were paired with discharge to estimate annual loads. The high frequency records were randomly subsampled to represent hourly, daily, weekly, and monthly sampling frequencies and to examine the effects of timing, and resulting annual load estimates were compared to the reference loads. Higher frequency sampling resulted in load estimates that better approximated the reference loads. The degree of bias was greater at the more hydrologically responsive site in the upper watershed, which required a higher sampling frequency than the lower watershed site to achieve the same level of accuracy in estimating the reference load. The hour of day and day of week of sampling impacted load estimation, depending on site and hydrologic conditions. The effects of sampling frequency on the determination of compliance with a water quality criterion were also examined. These techniques can be helpful in determining necessary sampling frequency to meet the objectives of a water quality monitoring program.  相似文献   

2.
ABSTRACT: Various temporal sampling strategies are used to monitor water quality in small streams. To determine how various strategies influence the estimated water quality, frequently collected water quality data from eight small streams (14 to 110 km2) in Wisconsin were systematically subsampled to simulate typically used strategies. These subsets of data were then used to estimate mean, median, and maximum concentrations, and with continuous daily flows used to estimate annual loads (using the regression method) and volumetrically weighted mean concentrations. For each strategy, accuracy and precision in each summary statistic were evaluated by comparison with concentrations and loads of total phosphorus and suspended sediment estimated from all available data. The most effective sampling strategy depends on the statistic of interest and study duration. For mean and median concentrations, the most frequent fixed period sampling economically feasible is best. For maximum concentrations, any strategy with samples at or prior to peak flow is best. The best sampling strategy to estimate loads depends on the study duration. For one‐year studies, fixed period monthly sampling supplemented with storm chasing was best, even though loads were overestimated by 25 to 50 percent. For two to three‐year load studies and estimating volumetrically weighted mean concentrations, fixed period semimonthly sampling was best.  相似文献   

3.
ABSTRACT: The Food Quality Protection Act of 1996 requires that human exposure to pesticides through drinking water be considered when establishing pesticide tolerances in food. Several systematic and seasonally weighted systematic sampling strategies for estimating pesticide concentrations in surface water were evaluated through Monte Carlo simulation, using intensive datasets from four sites in northwestern Ohio. The number of samples for the strategies ranged from 4 to 120 per year. Sampling strategies with a minimal sampling frequency outside the growing season can be used for estimating time weighted mean and percentile concentrations of pesticides with little loss of accuracy and precision, compared to strategies with the same sampling frequency year round. Less frequent sampling strategies can be used at large sites. A sampling frequency of 10 times monthly during the pesticide runoff period at a 90 km2 basin and four times monthly at a 16,400 km2 basin provided estimates of the time weighted mean, 90th, 95th, and 99th percentile concentrations that fell within 50 percent of the true value virtually all of the time. By taking into account basin size and the periodic nature of pesticide runoff, costs of obtaining estimates of time weighted mean and percentile pesticide concentrations can be minimized.  相似文献   

4.
Maupin, Molly A. and Tamara Ivahnenko, 2011. Nutrient Loadings to Streams of the Continental United States From Municipal and Industrial Effluent. Journal of the American Water Resources Association (JAWRA) 47(5):950‐964. DOI: 10.1111/j.1752‐1688.2011.00576.x Abstract: Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using “typical pollutant concentrations” to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point‐source nutrient loads. These loads can be used to inform a wide range of water‐quality management, watershed modeling, and research efforts at multiple scales.  相似文献   

5.
Load estimates obtained using an approach based on statistical distributions with parameters expressed as a function of covariates (e.g., streamflow) (distribution with covariates hereafter called DC method) were compared to four load estimation methods: (1) flow‐weighted mean concentration; (2) integral regression; (3) segmented regression (the last two with Ferguson's correction factor); and (4) hydrograph separation methods. A total of 25 datasets (from 19 stations) of daily concentrations of total dissolved solids, nutrients, or suspended particulate matter were used. The selected stations represented a wide range of hydrological conditions. Annual flux errors were determined by randomly generating 50 monthly sample series from daily series. Annual and interannual biases and dispersions were evaluated and compared. The impact of sampling frequency was investigated through the generation of bimonthly and weekly surveys. Interannual uncertainty analysis showed that the performance of the DC method was comparable with those of the other methods, except for stations showing high hydrological variability. In this case, the DC method performed better, with annual biases lower than those characterizing the other methods. Results show that the DC method generated the smallest pollutant load errors when considering a monthly sampling frequency for rivers showing high variability in hydrological conditions and contaminant concentrations.  相似文献   

6.
We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as delta34S in parts per thousand [/1000] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate-reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and delta34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and delta34S values distinct from those found in surface water. The delta34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.  相似文献   

7.
The purpose of this project was to assess the effect of estimating total suspended solids (TSS) concentrations from turbidity on TSS loads for streams in the Robeson Creek watershed. Discharge was monitored continuously and base‐flow grab and storm event composite samples were collected and analyzed for TSS and turbidity from five sites during five years of monitoring. For base‐flow samples, the TSS‐turbidity relationship for all five sites was poor indicating that TSS concentrations in base flow cannot be estimated from a TSS‐turbidity relationship. To test the effect of analyzing fewer samples, TSS from every third and the first 20 samples collected from each site was used to develop TSS‐turbidity relationships. In addition, the TSS‐turbidity relationship developed from the most downstream site was used to estimate TSS concentrations from turbidity measured at the other four sites. For four of the five sites, analyzing every third sample for TSS and using the TSS‐turbidity relationship to estimate the missing TSS concentrations would result in mean TSS loads that were not significantly different from the observed. Using the TSS‐turbidity relationship from the outlet to estimate TSS from turbidity measured at the other four sites resulted in significantly different mean TSS loads at three of the four sites. These results indicate that estimating TSS concentrations from turbidity using a TSS‐turbidity relationship developed from a subset of the overall dataset should be done with great caution.  相似文献   

8.
Recent appearance of cattail (Typha domingensis) within a southern Everglades slough—Upper Taylor Slough (Everglades National Park)—suggests ecosystem eutrophication. We analyze water quality, nutrient enrichment, and water management operations as potential drivers of eutrophication in Upper Taylor Slough. Further, we attempt to determine why surface water phosphorus, a parameter used commonly to monitor ecosystem health in the Everglades, did not serve as an early warning for eutrophication, which has broader implication for other restoration efforts. We found that surface water total phosphorus concentrations generally were below a 0.01 mg L−1 threshold determined to cause imbalances in flora and fauna, suggesting no ecosystem eutrophication. However, assessment of nutrient loads and loading rates suggest Upper Taylor Slough has experienced eutrophication and that continued total phosphorus loading through a point-source discharge was a major driver. These nutrient loads, combined with increases in hydroperiods, led to the expansion of cattail in Upper Taylor Slough. We recommend other metrics, such as nutrient loads, periphyton and arthropod community shifts, and sediment core analyses, for assessing ecosystem health. Monitoring surface water alone is not enough to indicate ecosystem stress.  相似文献   

9.
ABSTRACT: Anthropogenic phosphorus loading, mainly from the Everglades Agricultural Area (EAA), is believed to be the primary cause of eutrophication in the Everglades. The state of Florida has adopted a plan for addressing Everglades eutrophication problems by reducing anthropogenic phosphorus loads through the implementation of Best Management Practices (BMPs) in agricultural watersheds and the construction of stormwater treatment areas (STAs). Optimizing the effectiveness of these STAs for reducing phosphorus concentrations from agricultural runoff is a critical component of the District's comprehensive Everglades protection effort. Therefore, the objective of this study was to develop a simple tool that can be used to estimate STAs’performance and evaluate management alternatives considered in the Everglades restoration efforts. The model was tested at two south Florida wetland sites and then was used to simulate several management alternatives and predict ecosystem responses to reduced external phosphorus (P) loadings. Good agreement between model predictions at the two wetland sites and actual observations indicated that the model can be used as a management tool to predict wetlands’response to reductions in external phosphorus load and long-term P levels in aquatic ecosystems. Model results showed that lowering P content of the Everglades Protection Area (EPA) depends on reducing P loads originating from EAA discharges, not from rainfall. Assuming no action is taken (e.g., no BMPs or STAs implemented), the steady state model predicted that the average concentration within the modeled area of the marsh would reach 20 μg L?1 within five years. With an 85 percent reduction in P loading, the steady-state model predicted that Water Conservation Area 2A (WCA-2A) P concentration will equilibrate at approximately 10 μ L?1, while elimination of all loadings is projected to further reduce marsh P to values less than 10 μg L?1.  相似文献   

10.
River floodplains provide critical habitat for a wide range of animal and plant species and reduce phosphorus and nitrogen loads in streams. It has been observed that baseflow‐dominated streams flowing through wetlands are commonly at or near bankfull and overflow their banks much more frequently than other streams. However, there is very little published quantitative support for this observation. The study focuses on a 1‐km reach of Black Earth Creek, a stream in the Midwestern United States (U.S.). We used one‐dimensional hydraulic modeling to estimate bankfull discharge at evenly spaced stream cross sections, and two‐dimensional modeling to quantitate the extent of wetland inundation as a function of discharge. We then used historical streamflow data from two U.S. Geological Survey gaging stations to quantitate the frequency of wetland inundation. For the with‐sediment case, the frequency of overbank conditions at the 38 cross sections in the wetland ranged from 3 to 85 days per year and averaged 43 days per year. Ten percent of the wetland was inundated for an average of 35 days per year. For the without‐sediment case, the frequency of overbank conditions ranged from 2.6 to 48 days per year and averaged 14 days per year. Also, 10% of the wetland was inundated for an average of 25 days per year. These unusually high rates of floodplain inundation are likely due in part to the very low stream gradient and shallow depths of overbank flow.  相似文献   

11.
ABSTRACT: As part of the Comprehensive Everglades Restoration Plan (CERP), various water supply projects have been proposed in a region located between the Miami metropolitan area and the extensive regional wetland systems that are part of the Everglades or remnant Everglades. A ground water flow model of the surficial aquifer within northern Miami‐Dade County was constructed using MODFLOW to evaluate the effects of these projects on water levels in the wetlands and the underlying surficial aquifer. The new Wetlands package was used to conjunctively simulate overland flow through these wetlands and the shallow ground water system. Comparisons of simulated to measured ground water levels and wetland stages were very satisfactory, where computed and measured water levels agreed within 0.5 ft over most of the period of record at nearly all of the monitoring sites. Temporal trends in water levels were also replicated. It was concluded that the assumptions and methodologies inherent to the Wetlands package were suitable for simulating regional wetland hydrology within the Everglades area.  相似文献   

12.
ABSTRACT: The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row‐crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row‐crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.  相似文献   

13.
Due to chronic nutrient enrichment of surface water, wetlands adjacent to land managed with fertilizer have been studied to determine their role in nutrient dynamics. We sampled golf course runoff and determined the loads of NO3- and PO4(-3) transported during storms and the attenuation of those loads when runoff passed through a riparian wetland. All sampled storm events contained NO3- (2 to 1470 g NO3-N per event) and PO4(-3) (1 to 4156 g PO4-P per event). Extensive nutrient attenuation occurred when water passed through the riparian wetland. In 11 events, NO3- and PO4(-3) attenuation averaged 80 and 74%, respectively. In subsequent experiments, we created a stream of water flowing into the wetland and amended it with NO3-, PO4(-3) and Br-, creating an artificial runoff event. The experiments were conducted using conditions similar to those of natural runoff events. We observed rapid and complete attenuation of PO4(-3) immediately after runoff water infiltrated into the wetland subsurface. No PO4(-3) was observed in discharge from the wetland. Nitrate attenuation occurred following a lag phase of several hours that was probably due to reactivation of denitrifying enzymes. Nitrate attenuation was initially less than 60% but increased to 100% in all experiments. We observed extensive dilution of runoff water in the wetland subsurface indicating mixing with pre-event ground water in the wetland. The results indicated that intermittent inputs of NO3- and PO4(-3) could be successfully attenuated in the wetland on the time scale of natural storm events.  相似文献   

14.
Causes of variation between loads estimated using alternative calculation methods and their repeatability were investigated using 20 years of daily flow and monthly concentration samples for 77 rivers in New Zealand. Loads of dissolved and total nitrogen and phosphorus were calculated using the Ratio, L5, and L7 methods. Estimates of loads and their precision associated with short‐term records of 5, 10, and 15 years were simulated by subsampling. The representativeness of the short‐term loads was quantified as the standard deviation of the 20 realizations. The L7 method generally produced more realistic loads with the highest precision and representativeness. Differences between load estimates were shown to be associated with poor agreement between the data and the underlying model. The best method was shown to depend on the match between the model and functional and distributional characteristics of the data, rather than on the contaminant. Short‐term load estimates poorly represented the long‐term load estimate, and deviations frequently exceeded estimated imprecision. The results highlight there is no single preferred load calculation method, the inadvisability of “unsupervised” load estimation and the importance of inspecting concentration‐flow, unit load‐flow plots and regression residuals. Regulatory authorities should be aware that the precision of loads estimated from monthly data are likely to be “optimistic” with respect to the actual repeatability of load estimates.  相似文献   

15.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

16.
Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus].  相似文献   

17.
ABSTRACT: Nutrient data from all available sources for the lower Mississippi River were examined for potential differences among sampling agencies and geographic locations for the period between 1960 and 1998. Monthly means grouped by parameter, sampling location and agency, were calculated and compared as paired sets, excluding those months where data were not available for both sets. Some significant differences were found between various agencies collecting nutrient data on the river, as well as between various stretches of river, especially in the case of phosphorus nutrient data. Results were used to synthesize data sets from which a history of nutrient loading in the Mississippi River was determined. General trends in nitrate+nitrite, total Kjeldahl nitrogen, orthophosphate, total phosphorus and silica loads, as well as changes in nutrient proportions and the specific limiting nutrient (by month) are reported. This study provides a useful summary of contemporary and historical nutrient data that may assist in the evaluation of Mississippi River water quality and its potential effect on the Gulf of Mexico.  相似文献   

18.
A 4-yr (2005-2008) study was conducted to evaluate the potential of pasture water management for controlling nutrient losses in surface runoff in the Northern Everglades. Two pasture water management treatments were investigated on Bahia grass ( Flüggé) pastures: reduced flow and unobstructed flow. The reduced flow treatment was applied to four of eight 20.23-ha pastures by installing water control structures in pasture drainage ditches with flashboards set at a predetermined height. Four other pastures received the unobstructed-flow treatment, in which surface runoff exited pastures unimpeded. Automated instruments measured runoff volume and collected surface water samples for nutrient analysis. In analyzing data for before-after treatment analysis, the 2005 results were removed because of structural failure in water control structures and the 2007 results were removed because of drought conditions. Pasture water retention significantly reduced annual total nitrogen (TN) loads, which were 11.28 kg ha and 6.28 kg ha, respectively, in pastures with unobstructed and reduced flow. Total phosphorus (TP) loads were 27% lower in pastures with reduced flow than in pastures with unobstructed flow, but this difference was not statistically significant. Concentrations of available soil P were significantly greater in pastures with reduced flow. Pasture water retention appears to be an effective approach for reducing runoff volume and TN loads from cattle pastures in the Northern Everglades, but the potential to reduce TP loads may be diminished if higher water table conditions cause increased P release from soils, which could result in higher P concentration in surface runoff.  相似文献   

19.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

20.
ABSTRACT: A previous modeling study used the Generalized Watershed Loading Functions (GWLF) model to simulate stream‐flow, and nutrient and sediment loads to Cannonsville Reservoir from the West Branch Delaware River (WBDR). We made several model revisions, calibrated key parameters, and tested the original GWLF model and a revised GWLF model using more recent data. Model revisions included: addition of unsaturated leakage between unsaturated and saturated subsurface reservoirs; revised timing of sediment export; inclusion of urban sediments and dissolved nutrients; tracking of particulate nutrients from point sources; and revised timing of septic system loads. The revision of sediment yield timing resulted in significant improvements in monthly sediment and particulate phosphorus predictions as compared to the original model. Addition of unsaturated leakage improved hydrologic predictions during low flow months. The other model changes improve realism without adding significant model complexity or data requirements. Goodness of fit of revised model predictions versus stream measurements, as measured by the Nash‐Sutcliff coefficient of model efficiency, exceeded 0.8 for streamflow‐0.7 for sediment yield and dissolved nitrogen (N) and 0.6 for particulate and dissolved phosphorus (P). The revised GWLF model, with limited calibration, provides reasonable estimates of monthly streamflow, and nutrient and sediment loads in the Cannonsville watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号