首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: This study determines the most cost effective spatial pattern of farming systems for improving water quality and evaluates the economic value of riparian buffers in reducing agricultural nonpoint source pollution in a Midwestern agricultural watershed. Economic and water quality impacts of alternative farming systems are evaluated using the CARE and SWAT models, respectively. The water quality benefits of riparian buffers are estimated by combining experimental data and simulated water quality impacts of fanning systems obtained using SWAT. The net economic value of riparian buffers in improving water quality is estimated by total watershed net return with riparian buffers minus total watershed net return without riparian buffers minus the opportunity cost of riparian buffers. Exclusive of maintenance cost, the net economic value of riparian buffers in reducing atrazine concentration from 45 to 24 ppb is $612,117 and the savings in government cost is $631,710. Results strongly support efforts that encourage farmers to develop or maintain riparian buffers adjacent to streams.  相似文献   

2.
ABSTRACT: Riparian buffers are considered important management options for protecting water quality. Land costs and buffer performance, which are functions of local environmental characteristics, are likely to be key attributes in the selection process, especially when budgets are limited. In this article we demonstrate how a framework involving hydrologic models and binary optimization can be used to find the optimal buffer subject to a budget constraint. Two hydrologic models, SWAT and REMM, were used to predict the loads from different source areas with and without riparian buffers. These loads provided inputs for a binary optimization model to select the most cost efficient parcels to form a riparian buffer. This methodology was applied in a watershed in Delaware County, New York. The models were parameterized using readily available digital databases and were later compared against observed flow and water quality data available for the site. As a result of the application of this method, the marginal utility of incremental increases in buffer widths along the stream channel and the set of parcels to form the best affordable riparian buffer were obtained.  相似文献   

3.
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

4.
ABSTRACT: Ecologically effective ecosystem management will require the development of a robust logic, rationale, and framework for addressing the inherent limitations of scientific understanding. It must incorporate a strategy for avoiding irreversible or large-scale environmental mistakes that arise from social and political forces that tend to promote fragmented, uncritical, short-sighted, inflexible, and overly optimistic assessments of resource status, management capabilities, and the consequences of decisions and policies. Aquatic resources are vulnerable to the effects of human activities catchment-wide, and many of the landscape changes humans routinely induce cause irreversible damage (e.g., some species introductions, extinctions of ecotypes and species) or give rise to cumulative, long-term, large-scale biological and cultural consequences (e.g., accelerated erosion and sedimentation, deforestation, toxic contamination of sediments). In aquatic ecosystems, biotic impoverishment and environmental disruption caused by past management and natural events profoundly constrain the ability of future management to maintain biodiversity and restore historical ecosystem functions and values. To provide for rational, adaptive progress in ecosystem management and to reduce the risk of irreversible and unanticipated consequences, managers and scientists must identify catchments and aquatic networks where ecological integrity has been least damaged by prior management, and jointly develop means to ensure their protection as reservoirs of natural biodiversity, keystones for regional restoration, management models, monitoring benchmarks, and resources for ecological research.  相似文献   

5.
This review summarizes how conservation benefits are maximized when in‐field and edge‐of‐field buffers are integrated with each other and with other conservation practices such as residue management and grade control structures. Buffers improve both surface and subsurface water quality. Soils under permanent buffer vegetation generally have higher organic carbon concentrations, higher infiltration capacities, and more active microbial populations than similar soils under annual cropping. Sediment can be trapped with rather narrow buffers, but extensive buffers are better at transforming dissolved pollutants. Buffers improve surface runoff water quality most efficiently when flows through them are slow, shallow, and diffuse. Vegetative barriers ‐ narrow strips of dense, erect grass ‐ can slow and spread concentrated runoff. Subsurface processing is best on shallow soils that provide increased hydrologic contact between the ground water plume and buffer vegetation. Vegetated ditches and constructed wetlands can act as “after‐field” conservation buffers, processing pollutants that escape from fields. For these buffers to function efficiently, it is critical that in‐field and edge‐of‐field practices limit peak runoff rate and sediment yield in order to maximize contact time with buffer vegetation and minimize the need for cleanout excavation that destroys vegetation and its processing capacity.  相似文献   

6.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

7.
ABSTRACT. This paper describes the methodology for a nutrient balance to evaluate the sources and distribution of nutrients in a small river basin. Loadings for total nitrogen and phosphorus are calculated from measured nutrient concentration and river discharge data. Using a special retrieval program and a data storage and processing system, loadings are accumulated over a given time period to allow for time of passage through the basin and seasonal changes in nutrient distribution. Nutrient balances are made with the accumulated loadings to obtain the relative contribution of each nutrient source and the retention of nutrients within the basin through sedimentation and aquatic growth. The methodology has been used to study nutrients in the Qu'Appelle River Basin, Saskatchewan, Canada.  相似文献   

8.
ABSTRACT: Harvesting 29-year-old loblolly pine (Pinus taeda L.) plantations on six small catchments in the Coastal Plain of west Tennessee caused variable but generally minor increases of storm-flow volumes during the four years following harvest. The increases were primarily associated with decreases of rainfall interception rather than with soil disturbance. Harvesting had no effect on stormflow volumes in six nearby catchments of 37-year-old loblolly pine to which the same treatments were applied. Postharvest increases of flow-weighted sediment concentrations averaged higher for the catchments with greater flows at both locations. During the fourth through eighth years after harvest, average sediment concentrations for harvested catchments at each location approximated closely the base rate of 62 mg L-1 previously defined for undisturbed pine types. Thus, relatively minor postharvest increases of stormflow volumes in the six 29-year-old plantations and increases of sediment concentrations in all 12 catchments were limited to about four years. Nevertheless, because of potential channel erosion, the findings confirm the need to extend stream management zones well up into drainages with intermittent and ephemeral flows wherever water quality is a concern. Despite certain undesirable effects of logging (baring of mineral soil, decreased weight and depth of forest floor, increased soil bulk density), the results demonstrate the high resilience developed by pine planted on severely eroded sites in the southern Coastal Plain.  相似文献   

9.
ABSTRACT: A growing concern for environmental quality paralleled with increasing demands on our forest resources has prompted the Washington State Department of Natural Resources to evaluate simulation modeling as a technique for analyzing management decisions in terms of their environmental effects. The evaluation focused on a system of integrated models developed at the University of Washington which simulate processes and activities within the forest ecosystem. A major part of the system is a hydrologic model which predicts changes in discharge, stream temperature, and concentrations of suspended sediment and dissolved oxygen based on information generated by other models representing intensive management practices. The evaluation consisted of applying the system to a 72,000 acre tract of forest land, validating the models with two years of discharge and water quality data from a 93,000 acre watershed, and determining the pertinence of hydrologic modeling for management purposes. Results show several potential uses of hydrologic modeling for forest management planning, especially for analyzing the effects of timber harvesting strategies on water quality.  相似文献   

10.
ABSTRACT: This paper illustrates a method of using a hydrologic/water quality model to analyze alternative management practices and recommend best management practices (BMPs) to reduce nitrate-nitrogen (NO3--N) leaching losses. The study area for this research is Tipton, an agriculturally intensive area in southwest Oklahoma. We used Erosion Productivity Impact Calculator (EPIC), a field-scale hydrologic/water quality model, to analyze alternative agricultural management practices. The model was first validated using observed data from a cotton demonstration experiment conducted in the Tipton area. Following that, EPIC was used to simulate fertilizer response curves for cotton and wheat crops under irrigated and dryland conditions. From the fertilizer response functions (N-uptake and N-leaching), we established an optimum fertilizer application rate for each crop. Individual crop performances were then simulated at optimum fertilizer application rates and crop rotations for the Tipton area, which were selected based on three criteria: (a) minimum amount of NO3--N leached, (b) minimum concentration of NO3--N leached, and (c) maximum utilization of NO3--M. Further we illustrate that by considering residual N from alfalfa as a credit to the following crop and crediting NO3--N present in the irrigation water, it is possible to reduce further NO3--N loss without affecting crop yield.  相似文献   

11.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

12.
ABSTRACT: Phosphorus loading tolerances of small lakes are analyzed by means of a statistical model of lake eutrophication based upon the work of Vollenweider and Dillon. Using a sample of 195 midwestern and eastern U. S. lakes, it was found that Vollenweider and Dillon's method of predicting the trophic status of relatively deep, slow-flushing lakes can be applied to shallower lakes with much shorter retention times. The statistical model used to replicate the results of Vollenweider and Dillon is stated in detail, for convenience of application to small lake water quality management problems. The model extends the Vollenweider and Dillon results by associating each alternative phosphorous loading with a probability that a given lake can achieve or maintain noneutrophis status. It is applicable to lakes for which only minimal data are available. The major policy conclusion is that the highly variable tolerance for phosphorus loading must be considered in legislating efficient effluent limitations. The paper concludes with a comparison to a recent contribution employing a similar approach.  相似文献   

13.
ABSTRACT: Over a three‐year period, flow and nutrients were monitored at 13 sites in the upper North Bosque River watershed in Texas. Drainage areas above sampling sites differed in percent of dairy waste application fields, forage fields, wood/range, and urban land area. A multiple regression approach was used to develop total phosphorus (TP) and total nitrogen (TN) export coefficients for the major land uses in these heterogeneous drainage areas. The largest export coefficients were associated with dairy waste application fields followed by urban, forage fields, and wood/range. An empirical model was then established to assess nutrient contribution by major sources using developed export coefficients and point source loadings from municipal wastewater treatment. This model was verified by comparison of estimated loadings to measured in‐stream data. Monte Carlo simulation techniques were applied to provide an uncertainty analysis for nutrient loads by source, based on the variance associated with each export coefficient. The largest sources of nutrients contributing to the upper North Bosque River were associated with dairy waste application fields and forage fields, while the greatest relative uncertainty in source contribution was associated with loadings from urban and wood/range land uses.  相似文献   

14.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

15.
ABSTRACT: A steady-state, one-dimensional water quality model has been formulated to evaluate spatial variations of Biochemical Oxygen Demand, ammonia nitrogen, and dissolved oxygen for nontidal, branched river systems, with point sources of treated wastes and uniform nonpoint-source loads, under aerobic and/or anaerobic stream conditions. For anaerobic conditions, the decay rate of organic matter is assumed to be limited by the rate of oxygen addition to the streams via stream reaeration and net algal photosynthesis and respiration contributions. The model is applicable to stream impact analysis under sustained wet weather conditions, during which storm-runoff loads are generated by storms of sufficiently long duration to approach steady state in the river system.  相似文献   

16.
ABSTRACT: Linear programming is applied to identify the least cost strategy for reaching politically specified phosphorus and total suspended solids reduction targets for the Fox-Wolf river basin in Northeast Wisconsin. The programming model uses data collected on annualized unit reduction costs associated with five categories of sources of phosphorus and total suspended solids discharge in each of the 41 sub-watersheds in the basin to determine the least cost management strategy. Results indicate that: (1) cost-effective nutrient reduction requires careful selection of geographic areas and source categories to address throughout the watershed; (2) agricultural sources are the most cost-effective to address in the basin; and (3) care should be exercised in setting nutrient reduction targets, given that there are likely to be significantly increasing marginal costs of nutrient reduction; the model predicts that lowering the most restrictive target by 33 percent would cut reduction expenditures by about 75 percent. Policy implications of the model include support for the investigation and potential development of institutional arrangements that enable cost-effective nutrient reduction activities to occur, such as the creation of an agency with authority over a given watershed, coordinated watershed management activities, or nutrient trading programs.  相似文献   

17.
ABSTRACT: Fifteen years of streamflow and water quality data were evaluated to determine the effectiveness of Best Management Practices (BMP's) in controlling nonpoint source pollution from an 110. acre commercial clearcut located in the Ridge and Valley Province of central Pennsylvania. The analyses addressed both short- and long-term changes in the physical and chemical properties and the hydro-logic regime of the stream draining this 257-acre watershed. Overall, the BMP's employed on this commercial clearcut were very effective in preventing serious deterioration of stream quality as a result of forest harvesting. Although statistically significant increases in nitrate and potassium concentrations and temperature and turbidity levels were measured the first two years following harvesting, the increases were relatively small and, with the exception of turbidity, within drinking water standards. Nevertheless, such increases may violate EPA's anti-degradation policy. Nitrate and potassium concentrations and turbidity levels remained above pre-harvesting levels for as long as nine years following harvesting. Clearcutting also significantly increased water yield, which in turn initially lowered the concentrations of most solutes because of dilution. Increased water yields returned to pro-harvesting levels within four years as a result of rapid regrowth. The export of some ions increased; however, the increased export appeared to be insufficient to affect site fertility. Implementation of periodic post-harvest inspections of harvested areas, increasing the width of the buffer zone, and utilizing buffer zones on all perennial and intermittent channels would reduce further impacts of silvi-cultural activities on water quality.  相似文献   

18.
ABSTRACT: Stream water chemistry was monitored on two watersheds on the Fernow Experimental Forest in north-central West Virginia to determine the effects of forest fertilization on annual nutrient exports. Ammonium nitrate and triple superphosphate were applied simultaneously at rates of 336 kg ha?1 N and 224 kg ha?1 P2O5, respectively, which are similar to rates used in commercial forest operations. The treatment significantly increased outputs of several ions. Annual outputs of nitrate N increased as much as 18 times over pretreatment levels, and calcium and magnesium increased as much as three times over pretreatment levels the first year after fertilization. Outputs for these nutrients were elevated for all three post-treatment years. Although nitrate N increased significantly, only about 20 percent of the applied fertilizer was accounted for in stream water exports. Outputs of phosphate P declined following fertilization, probably because the watersheds are phosphorus deficient, but by the third year, they slightly exceeded predicted values. Estimated nutrient losses to deep seepage were substantial, especially on the leakier south-facing catchmeat, on which some nutrient losses were equal to or greater than those in stream water. When the nutrient exports associated with both stream discharge and ground water recharge were combined, the percentages of applied N that were lost were similar on the two watersheds, averaging 27.5 percent. Less than 1 percent of the applied P was lost from either watershed in the combination of streamflow and deep seepage.  相似文献   

19.
ABSTRACT: Overwinter draw down can be a useful technique for aquatic plant management. Its effectiveness depends largely on the susceptibility of nuisance species to draw down. A single overwinter draw down provided good control of aquatic plants in a flowage dominated by Potamogeton robbinsii Little additional control was gained by a second draw down the following winter. Rapid reinvasion of plants after draw down ceased dictates continued management. To avoid fish kills caused by low dissolved oxygen levels caution is advised when using overwinter draw down. The growth of Zizania aquatica was not negatively influenced by draw down. The influence on water quality of nutrient release from decaying vegetation and exposed bottom sediments was uncertain.  相似文献   

20.
ABSTRACT: Drought in the 1960's lowered Quabbin Reservoir levels and exposed extensive shore areas for up to 12 years. Several vegetation types including gray birch, spirea, reed and cottonwood invaded the exposed shore and were subsequently submerged when water levels rose in 1972–73. Biomass of the flooded vegetation is estimated at 14,000 tons. Using literature-derived estimates of nitrogen and phosphorus concentrations in the vegetation, the potential nutrient release to the reservoir is about 140 tons of N and 14 tons of P. These amounts are comparable to the N and P input into the reservoir during a single year of the planned diversion from the Connecticut River. The critical factor of rate of release of these nutrients by decomposition is the subject of continuing study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号