首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Water quality criteria are necessary to ensure protection of ecological and human health conditions, but compliance can require complex decisions. We use structured decision making to consider multiple stakeholder objectives in a water quality management process, with a case study in the Three Bays watershed on Cape Cod, Massachusetts. We set a goal to meet or exceed a nitrogen load reduction target for the watershed and four key objectives: minimizing economic costs of implementing management actions, minimizing the complexity of permitting management actions, maximizing stakeholder acceptability of the management actions, and maximizing the provision of ecosystem services (recreational opportunity, erosion and flood control, socio‐cultural amenity). We used multi‐objective optimization and sensitivity analysis to generate many possible solutions that implement different combinations of nitrogen‐removing management actions and reflect tradeoffs between the objectives. Results show technological advances in controlling household nitrogen sources could provide lower cost solutions and positive impacts to ecosystem services. Although this approach is demonstrated with Cape Cod data, the decision‐making process is not specific to any watershed and could be easily applied elsewhere.  相似文献   

2.
ABSTRACT: Access to clean and sufficient amounts of water is a critical problem in many countries. A watershed approach is vital in understanding pollution pathways affecting water resources and in developing participatory solutions. Such integration of information with participatory approaches can lead to more sustainable solutions than traditional “crisis‐to‐crisis” management approaches. This study aims at applying a watershed based joint action approach to manage water resources. Since most watersheds have urban and rural sources of pollution and a wide disparity in access to and use of water, alternative solutions need to take an integrated approach through cooperative actions. An institutional model was applied to seven subwatersheds in Honduras to evaluate various sources and effects of water contamination and water shortages. Two specific pathways of water resources degradation were studied (contamination from coffee pulp manufacturing and urban nonpoint sources) to develop alternative solutions that mitigate downstream impacts of access to clean water. A locally driven joint mechanism to reuse coffee pulp in farming systems is proposed. Such an institutional solution can maximize benefits to both farms and the coffee pulp industry. A combination of education and investment in sanitary facilities in urbanizing areas is proposed to minimize urban sources of water contamination.  相似文献   

3.
Understanding what constitutes a reference (background) nutrient condition for lakes is important for National Park Service managers responsible for preserving and protecting aquatic resources. For this study we characterize water quality conditions in 29 lakes across four national parks, and compare their nutrient status to U.S. Environmental Protection Agency (USEPA) nutrient reference criteria and alternative criteria recently proposed by others. Where appropriate we also compare the nutrient status of these 29 lakes to state or tribal nutrient reference criteria or standards. For lakes that exceed reference criteria we investigate physical and chemical patterns, and for a subset of lakes compare modern nutrient conditions to paleolimnological (i.e., diatom‐inferred [DI]) nutrient reconstructions. Many lakes exceeded USEPA nutrient reference criteria, but met alternative less restrictive criteria. Modern nutrient conditions were also largely consistent with DI historic (pre‐1900) nutrient conditions. Lakes exceeding alternative nutrient criteria and with elevated nutrient levels relative to DI historic conditions were mostly small, shallow, and dystrophic; continued attention to their nutrient dynamics and biological response is warranted. Coupling modern and paleolimnological data offer an innovative and scientifically defensible approach to understand long‐term nutrient trends and provide greater context for comparison with reference conditions.  相似文献   

4.
The reaction and separation systems of a continuous chemical process can be considered independently to identify alternatives. Interactions between the two systems are then taken into account to determine potentially feasible process flow diagrams. A subset or cluster of potentially inherently cleaner process options can then be selected for further consideration using economic, safety, and environmental criteria. In this paper a prototype screening methodology is presented to facilitate the independent identification of potentially feasible alternatives for the separation system. The current capabilities of the presented prototype, its relationship with existing approaches, and key limitations are described.  相似文献   

5.
Abstract: The U.S. Environmental Protection Agency is charged with establishing standards and criteria for assessing lake water quality. It is, however, increasingly evident that a single set of national water quality standards that do not take into account regional hydrogeologic and ecological differences will not be viable as lakes clearly have different inherent capacities to meet such standards. We demonstrate a GIS‐based watershed classification strategy for identifying groups of Nebraska reservoirs that have similar potential capacity to attain a certain level of water quality standard. A preliminary cluster analysis of 78 reservoirs was performed to determine the potential number of Nebraska reservoir groups. Subsequently, a Classification Trees method was used to refine number of classes, describe the structure of reservoir watershed classes, and to develop a predictive model that relates watershed conditions to reservoir classes. Results suggest that Nebraska reservoirs can be represented by nine classes and that soil organic matter content in the watershed is the most important single variable for segregating the reservoirs. The cross‐validation prediction error rate of the Classification Tree model was 26.3%. Because all geospatial data used in this work are available nationally, the method could be adopted throughout the U.S. Hence, this GIS‐based watershed classification approach could provide water resources managers an effective decision‐support tool in managing reservoir water quality.  相似文献   

6.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

7.
ABSTRACT: Approximately 4.5 million people in the United States who rely on well water are exposed to nitrate‐N concentrations exceeding the 10 mg/l standard. In this study in the Southern Willamette Valley in Oregon we reassessed nitrate‐N in rural wells sampled in 2000–2001, compared nitrate‐N concentrations among geological units, and surveyed residents about their perceptions of well water quality. Nitrate‐N concentrations were again sampled in 2002 and found to have increased significantly from the previous period. With rapid population growth in the area, the potential health risk in drinking well water that exceeds 10 mg/l nitrate‐N warrants continued public education. Nitrate‐N concentrations were found to be higher in the Holocene alluvium of the Willamette River and the Pleistocene sand and gravel post‐Missoula Flood deposits. Researchers conducting future studies may choose to stratify and monitor wells by geologic unit and by other parameters that estimate input of nutrients to the environment. Opinions differed between agricultural landowners and nonagricultural landowners with regard to the impact that agricultural fertilizers may have on water quality. Participants were supportive of a range of regulatory actions that might be used by homeowners or landowners to address ground water contamination. Given that the area is now designated a Groundwater Management Area, understanding local stakeholders’perceptions is critical and strategic and has the potential to help public agencies manage potential conflicts of opinion among stakeholders, build consensus, and help guide the approach to restoring ground water quality.  相似文献   

8.
In recent decades, many changes have occurred in the approach to financing and operating water services in developing countries. The demand‐responsive approach is now adopted in many countries in a context of donor‐supported decentralization processes, which gives more responsibility to end users. However, the government's responsibility at different levels is enforced by the international recognition of the human right to water. This paper examines specific actions that build the role of local government authorities in this scenario. A collaboration between an international NGO and a rural district in Tanzania from 2006 to 2009 is used as an action research case study that is representative of local capacity‐building needs in decentralized contexts and rural areas. Three main challenges were detected: i) lack of reliable information; ii) poor allocation of resources in terms of equity; and iii) lack of long‐term community management support from the district. Two mechanisms were established: i) water point mapping as a tool for information and planning; and ii) a District Water and Sanitation Unit Support (DWUS) for community management. The results show how the framework provided by the goal of human right to water helps to define useful strategies for equity‐oriented planning and post‐project support at the local level.  相似文献   

9.
ABSTRACT: Drinking of arsenic‐contaminated tubewell water has become a serious health threat in Bangladesh. Arsenic contaminated tubewells are believed to be responsible for poisoning nearly two‐thirds of this country's population. If proper actions are not taken immediately, many people in Bangladesh will die from arsenic poisoning in just a few years. Causes and consequences of arsenic poisoning, the extent of area affected by it, and local knowledge and beliefs about the arsenic problem — including solutions and international responses to the problem — are analyzed. Although no one knows precisely how the arsenic is released into the ground water, several contradictory theories exist to account for its release. Initial symptoms of the poisoning consist of a dryness and throat constriction, difficulty in swallowing, and acute epigastric pain. Long‐term exposure leads to skin, lung, or bladder cancer. Both government and nongovernmental organizations (NGOs) in Bangladesh, foreign governments, and international agencies are now involved in mitigating the effects of the arsenic poisoning, as well as developing cost‐effective remedial measures that are affordable by the rural people.  相似文献   

10.
On-ground natural resource management actions such as revegetation and remnant vegetation management can simultaneously affect multiple objectives including land, water and biodiversity resources. Hence, planning for the sustainable management of natural resources requires consideration of these multiple objectives. However, planning the location of management actions in the landscape often treats these objectives individually to reduce the process and spatial complexity inherent in human-modified and natural landscapes. This can be inefficient and potentially counterproductive given the linkages and trade-offs involved. We develop and apply a systematic regional planning approach to identify geographic priorities for on-ground natural resource management actions that most cost-effectively meet multiple natural resource management objectives. Our systematic regional planning approach utilises integer programming within a structured multi-criteria decision analysis framework. Intelligent siting can capitalise on the multiple benefits of on-ground actions and achieve natural resource management objectives more efficiently. The focus of this study is the human-modified landscape of the River Murray, South Australia. However, the methodology and analyses presented here can be adapted to other regions requiring more efficient and integrated planning for the management of natural resources.  相似文献   

11.
The choice among alternative water supply sources is generally based on the fundamental objective of maximising the ratio of benefits to costs. There is, however, a need to consider sustainability, the environment and social implications in regional water resources planning, in addition to economics. In order to achieve this, multi-criteria decision analysis (MCDA) techniques can be used. Various sources of uncertainty exist in the application of MCDA methods, including the selection of the MCDA method, elicitation of criteria weights and assignment of criteria performance values. The focus of this paper is on the uncertainty in the criteria weights. Sensitivity analysis can be used to analyse the effects of uncertainties associated with the criteria weights. Two existing sensitivity methods are described in this paper and a new distance-based approach is proposed which overcomes limitations of these methods. The benefits of the proposed approach are the concurrent alteration of the criteria weights, the applicability of the method to a range of MCDA techniques and the identification of the most critical criteria weights. The existing and proposed methods are applied to three case studies and the results indicate that simultaneous consideration of the uncertainty in the criteria weights should be an integral part of the decision making process.  相似文献   

12.
Traditionally, assessment of human health risk caused by contamination of a water supply focuses on the maximum risk to an individual. Here, we introduce a time‐dependent risk assessment method and adapt and explore the reliability, resilience, and vulnerability (RRV) criteria from the surface‐water literature as possible tools for assessing this risk. Time‐dependent risk assessment, including RRV, is applied to two synthetic examples where water quality at a well varies over time. We calculate time‐dependent health risks for discrete periods of exposure to the contaminated water for a variable population. The RRV criteria provide information about time‐dependent risk: probability of an acceptable risk, probability of system recovery, maximum risk, and average exceedance of a prescribed risk threshold. The results demonstrate that episodic contamination events produce fundamentally different time‐dependent risks than long‐term events: these differences, such as generally lower risks for the episodic contamination, can be captured via plots of the risk and the RRV criteria. Furthermore, the evaluation of time‐dependent health risk and the RRV criteria demonstrates significant sensitivity to the shape of the contaminant breakthrough curve, length of exposure, and variability within the population. Overall, analysis of time‐dependent health risks provides substantial insight into the structure of risk, with RRV providing a reasonable framework for the evaluation of these risks.  相似文献   

13.
Agricultural water management is a complex decision-making problem involving multiple criteria of different nature as well as multiple decision agents with different interests. To handle this multiplicity of objectives and interests a pragmatic approach based on compromise programming is proposed in this paper. The methodology is applied to an agricultural water management problem in Tauste, Spain. Public, environmentalist and private decision makers are considered. The approach proposed reveals itself as a pragmatic alternative to other approaches based on aggregate utility functions with very sound theoretical underpinnings but with few possibilities of actually being put into practice.  相似文献   

14.
An initial inquiry into model‐based numeric nitrogen and phosphorus (nutrient) criteria for large rivers is presented. Field data collection and associated modeling were conducted on a segment of the lower Yellowstone River in the northwestern United States to assess the feasibility of deriving numeric nutrient criteria using mechanistic water‐quality models. The steady‐state one‐dimensional model QUAL2K and a transect‐based companion model AT2K were calibrated and confirmed against low‐flow conditions at a time when river loadings, water column chemistry, and diurnal indicators were approximately steady state. Predictive simulation was then implemented via nutrient perturbation to evaluate the steady‐state and diurnal response of the river to incremental nutrient additions. In this first part of a two‐part series, we detail our modeling approach, model selection, calibration and confirmation, sensitivity analysis, model outcomes, and associated uncertainty. In the second part (Suplee et al., 2015) we describe the criteria development process using the tools described herein. Both articles provide a fundamental understanding of the process required to develop site‐specific numeric nutrient criteria using models in applied regulatory settings.  相似文献   

15.
Group decision-making for leakage management strategy of water network   总被引:2,自引:0,他引:2  
The problem of leakage is complex and requires actions drawn from different aspects of water network management. Inadequate maintenance has serious consequences, both financial and environmental. This paper proposes a group decision-making model based on PROMETHEE V method to aim a leakage management strategy, which takes into account the points of view of four stakeholders, selecting feasible options, and considering the available budget as constraint. Thus, this strategy is the combination of options that will efficiently meet technical, socio-economic and environmental criteria to achieve sustainable development.  相似文献   

16.
ABSTRACT: The designs of stream channel naturalization, rehabilitation, and restoration projects are inherently fraught with uncertainty. Although a systematic approach to design can be described, the likelihood of success or failure of the design is unknown due to uncertainties within the design and implementation process. In this paper, a method for incorporating uncertainty in decision‐making during the design phase is presented that uses a decision analysis method known as Failure Modes and Effects Analysis (FMEA). The approach is applied to a channel rehabilitation project in north‐central Pennsylvania. FMEA considers risk in terms of the likelihood of a component failure, the consequences of failure, and the level of difficulty required to detect failure. Ratings developed as part of the FMEA can provide justification for decision making in determining design components that require particular attention to prevent failure of the project and the appropriate compensating actions to be taken.  相似文献   

17.
Li, Y.P. and G.H. Huang, 2011. Planning Agricultural Water Resources System Associated With Fuzzy and Random Features. Journal of the American Water Resources Association (JAWRA) 47(4):841‐860. DOI: 10.1111/j.1752‐1688.2011.00558.x Abstract: More and more regions where demand outstrips water resources availability have suffered from chronic severe shortages. It is particularly aggravated for agricultural irrigation systems where more water is necessary to support the rapidly increasing population and speedily developing economy. In this study, a two‐stage fuzzy‐stochastic programming (TFSP) method is developed for planning agricultural water resources management system in more efficient and sustainable ways. The developed method can address uncertain parameters described as probability distributions and fuzzy sets. It can also be used for analyzing various policy scenarios that are associated with different levels of economic consequences since penalties are exercised with recourse actions against any infeasibility. The developed method is applied to agricultural water‐resources management planning of the Zhangweinan River Basin, China. Solutions under various α‐cut levels and fuzzy dominance indices can be generated by solving a series of deterministic submodels, which can help determine optimized crop‐target values that could hedge appropriately against future available water levels. The results are helpful for water resources managers in not only making decisions of crop irrigation but also gaining insight into the tradeoffs between economic objective and system‐failure risk.  相似文献   

18.
Escherichia coli is often monitored in environmental waters as an indicator of the possible presence of human pathogens associated with feces. Petrifilm E. coli/coliform count plates (3M, Minneapolis, MN), previously validated for enumerating E. coli in food, were tested for monitoring E. coli in environmental water. Escherichia coli counts in environmental water samples enumerated with Petrifilm were significantly correlated (R > 0.9; slope = 0.9-1.0; p < 0.001) with counts obtained with three commonly used methods, mTEC (Becton Dickinson, Sparks, MD), m-ColiBlue (Hach, Loveland, CO), and Colilert-18/IDEXX Quanti-Tray 2000 (IDEXX, Westbrook, ME). Blue colonies on Petrifilm plates were most reliably identified as E. coli when accompanied by gas formation, as determined by characterization of the colonies on MacConkey agar plates (PML Microbiologicals, Mississauga, ON, Canada) and by polymerase chair reaction (PCR) with E. coli-specific primers. The main disadvantage of Petrifilm plates for environmental water testing is the small volume (1 mL per sample) that can be tested; however, the plates appear to be suitable for screening and locating sites that exceed criteria for total body and partial body contact. Simplicity of use and storage, reliability, and relatively low cost make Petrifilm plates suitable for volunteer-based and educational water quality monitoring applications, particularly when used as a preliminary screening method to identify problem sites.  相似文献   

19.
The current paper discusses the multi‐strainer technique developed to augment usable water by the combined use of saline and non‐saline aquifers in locations where a freshwater aquifer is underlain or overlain by a saline water aquifer. The multi‐strainer technique evaluates design criteria for the formulation of multi‐strainer schemes to supply water at an acceptable salinity limit by combined use of the saline and non‐saline aquifers. The design ratio of discharges can be maintained by adjusting the strainers’ lengths in the saline and non‐saline aquifers. The multi‐strainer scheme has been applied in the coastal aquifers of Bangladesh and found to be effective at lowering the water salinity concentrations to acceptable levels, thus increasing the availability of water for sustainable use. The multi‐strainer scheme should be designed based on the thickness of the aquifer layers to be screened, the salinity concentrations of the screened layers, and the level of salinity concentration to be maintained.  相似文献   

20.
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号