首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The average annual base flow/recharge was determined for streamflow‐gaging stations throughout Wisconsin by base‐flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970‐99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow‐gaging stations that had long‐term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple‐regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low‐flow partial‐record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base‐flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins.  相似文献   

2.
River floodplains provide critical habitat for a wide range of animal and plant species and reduce phosphorus and nitrogen loads in streams. It has been observed that baseflow‐dominated streams flowing through wetlands are commonly at or near bankfull and overflow their banks much more frequently than other streams. However, there is very little published quantitative support for this observation. The study focuses on a 1‐km reach of Black Earth Creek, a stream in the Midwestern United States (U.S.). We used one‐dimensional hydraulic modeling to estimate bankfull discharge at evenly spaced stream cross sections, and two‐dimensional modeling to quantitate the extent of wetland inundation as a function of discharge. We then used historical streamflow data from two U.S. Geological Survey gaging stations to quantitate the frequency of wetland inundation. For the with‐sediment case, the frequency of overbank conditions at the 38 cross sections in the wetland ranged from 3 to 85 days per year and averaged 43 days per year. Ten percent of the wetland was inundated for an average of 35 days per year. For the without‐sediment case, the frequency of overbank conditions ranged from 2.6 to 48 days per year and averaged 14 days per year. Also, 10% of the wetland was inundated for an average of 25 days per year. These unusually high rates of floodplain inundation are likely due in part to the very low stream gradient and shallow depths of overbank flow.  相似文献   

3.
ABSTRACT: The delineation of inland wetlands requires close field examination of the biological and physical gradients (transition zones) between wetlands and bordering uplands. As part of a study on the detection and delineation of inland wetlands in eastern Connecticut by remote sensing techniques, this effort was designed to investigate vegetation distribution and composition and selected physical and chemical properties of the soils of wetland to upland transition zones in deciduous wetland forests. Field research was conducted during the growing season of 1975 within a test area consisting of the 45 mi2 Town of Mansfield, Connecticut. Changes in vegetation composition and structure, soil pH, and soil water content were determined along line transects extended over wetland to upland transition zones. Differences in soil pH occurred along the transects but were of such magnitude that they probably have little impact on plant distribution. There were significant changes in soil water content along the wetland to upland gradients. Discriminant analysis applied to statistical “index of abundance” data describing vegetation distribution among the various zones (wetland, transition, upland) showed which plant species best distinguish wetlands from uplands. Of the criteria studied, vegetation composition and distribution, soil water content, and relief are the most useful criteria for delineating deciduous wetland forests.  相似文献   

4.
ABSTRACT: As part of the Comprehensive Everglades Restoration Plan (CERP), various water supply projects have been proposed in a region located between the Miami metropolitan area and the extensive regional wetland systems that are part of the Everglades or remnant Everglades. A ground water flow model of the surficial aquifer within northern Miami‐Dade County was constructed using MODFLOW to evaluate the effects of these projects on water levels in the wetlands and the underlying surficial aquifer. The new Wetlands package was used to conjunctively simulate overland flow through these wetlands and the shallow ground water system. Comparisons of simulated to measured ground water levels and wetland stages were very satisfactory, where computed and measured water levels agreed within 0.5 ft over most of the period of record at nearly all of the monitoring sites. Temporal trends in water levels were also replicated. It was concluded that the assumptions and methodologies inherent to the Wetlands package were suitable for simulating regional wetland hydrology within the Everglades area.  相似文献   

5.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   

6.
ABSTRACT:  In 2001, the 1.04‐ha Hornbaker wetland in south‐central Pennsylvania was restored by blocking an artificial drainage ditch to increase water storage and hydraulic retention time (HRT). A primary goal was to diminish downstream delivery of nitrate that enters the wetland from a limestone spring, its main source of inflow. Wetland inflow and outflow were monitored weekly for two years to assess nitrate flux, water temperature, pH, and specific conductivity. In Year 2, spring discharge was measured weekly to allow calculation of nitrate loads and hydraulic retention time. Surface runoff was confirmed to be a small fraction of wetland inflows via rainfall‐runoff modeling with TR‐55. The full dataset (n = 102) was screened to remove 13 weeks in which spring discharge constituted < 85% of total inflows because of high precipitation and surface runoff. Over two years (n = 89), mean nitrate‐nitrogen concentrations were 7.89 mg/l in inflow and 3.68 mg/l in outflow, with a mean nitrate removal of 4.19 mg/l. During Year 2 (n = 47), for which nitrate load data were available, the wetland removed an average of 2.32 kg N/day, 65% of the load. Nitrate removal was significantly correlated with HRT, water temperature, and the concentration of nitrate in inflow and was significantly greater during the growing season (5.36 mg/l, 64%) than during the non‐growing season (3.23 mg/l, 43%). This study indicates that hydrologic restoration of formerly drained wetlands can provide substantial water quality benefits and that the hydrologic characteristics of spring‐fed wetlands, in particular, support effective nitrogen removal.  相似文献   

7.
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland.  相似文献   

8.
We examined nitrogen transport and wetland primary production along hydrologic flow paths that link nitrogen‐fixing alder (Alnus spp.) stands to downslope wetlands and streams in the Kenai Lowlands, Alaska. We expected that nitrate concentrations in surface water and groundwater would be higher on flow paths below alder. We further expected that nitrate concentrations would be higher in surface water and groundwater at the base of short flow paths with alder and that streamside wetlands at the base of alder‐near flow paths would be less nitrogen limited than wetlands at the base of long flow paths with alder. Our results showed that groundwater nitrate‐N concentrations were significantly higher at alder‐near sites than at no‐alder sites, but did not differ significantly between alder‐far sites and no‐alder sites or between alder‐far sites and alder‐near sites. A survey of 15N stable isotope signatures in soils and foliage in alder‐near and no‐alder flow paths indicated the alder‐derived nitrogen evident in soils below alder is quickly integrated downslope. Additionally, there was a significant difference in the relative increase in plant biomass after nitrogen fertilization, with the greatest increase occurring in the no‐alder sites. This study demonstrates that streamside wetlands and streams are connected to the surrounding landscapes through hydrologic flow paths, and flow paths with alder stands are potential “hot spots” for nitrogen subsidies at the hillslope scale.  相似文献   

9.
The Hydrogeomorphic (HGM) functional assessment method is predicated on the ability of hydrogeomorphic wetland classification and visual assessment of alteration to provide reference standards against which functions in individual wetlands can be evaluated. The effectiveness of this approach was tested by measuring nitrogen cycling functions in forested wetlands in an urbanized region in New Jersey, USA. Fourteen sites represented three HGM classes and were characterized as “least disturbed reference” or “non-reference” based on initial visual assessment. Water table levels and in situ rates of net nitrogen mineralization, net nitrification, and denitrification were measured over one year in each site. Hydrological alterations, resulting in consistently low or flashy water table levels, were not correlated with a priori designations as reference and non-reference. Although the flat-riverine wetland class had lower net nitrification and higher denitrification rates than riverine or mineral flat wetland classes, this difference was attributable to the lack of hydrologically-altered wetlands in the flat-riverine class, and thus more consistently wet conditions. Within all HGM classes, a classification based on the long-term hydrological record that separated sites with “normal,” saturated hydrology from those with “altered,” drier hydrology, clearly distinguished sites with different nitrogen cycling function. Based on these findings, current practices for designating reference standard sites to judge wetland functions, at least in urbanized regions, are ineffective and potentially misleading. At least one year of hydrological monitoring data is suggested to classify wetlands into groups that have different nutrient cycling functions, particularly in urban landscapes.  相似文献   

10.
ABSTRACT: Federal parks and other public lands have unique mandates and rules regulating their use and conservation. Because of variation in their response to local, regional, and global‐scale disturbance, development of mitigation strategies requires substantial research in the context of long‐term inventory and monitoring. In 1982, the National Park Service began long‐term, watershed‐level studies in a series of national parks. The objective was to provide a more comprehensive database against which the effects of global change and other issues could be quantified. A subset of five sites in North Carolina, Texas, Washington, Michigan, and Alaska, is examined here. During the last 50 years, temperatures have declined at the southern sites and increased at the northern sites with the greatest increase in Alaska. Only the most southern site has shown an increase in precipitation amount. The net effect of these trends, especially for the most northern and southern sites, would likely be an increase in the growing season and especially the time soil processes could continue without moisture or temperature limitations. During the last 18 years, there were few trends in atmospheric ion inputs. The most evident was the decline in SO42 deposition. There were no significant relationships between ion input and stream water output. This finding suggests other factors as modification of precipitation or canopy throughfall by soil processes, hydrologic flow path, and snowmelt rates are major processes regulating stream water chemical outputs.  相似文献   

11.
Abstract: Nonpoint source pollution (NPS) studies, such as total maximum daily loads development, often require quantification of flow in small first‐order and second‐order streams. Frequently, stream‐gaging techniques are implemented in flows that are below the manufacturer’s recommended minimum velocity. A comparative analysis of the accuracy of current technologies used in NPS pollution stream‐gaging applications and their applicability in low‐flow conditions was conducted. Nine stream‐gaging methods were evaluated for their field and laboratory performance and control structures were used as the statistical control. Analysis of the field investigation data indicated that Marsh McBirney current meter and the One‐orange method were the most accurate in the field while the results of the laboratory experiments found that the Starflow acoustic Doppler and Valeport Braystoke current meter performed best among the 10 methods. Overall, the Marsh McBirney and Valeport Braystoke current meters exhibited the best performance for both field and laboratory situations.  相似文献   

12.
ABSTRACT: Baseflow, or water that enters a stream from slowly varying sources such as ground water, can be critical to humans and ecosystems. We evaluate a simple method for estimating base‐flow parameters at ungaged sites. The method uses one or more baseflow discharge measurements at the ungaged site and longterm streamflow data from a nearby gaged site. A given baseflow parameter, such as the median, is estimated as the product of the corresponding gage site parameter and the geometric mean of the ratios of the measured baseflow discharges and the concurrent discharges at the gage site. If baseflows at gaged and ungaged sites have a bivariate lognormal distribution with high correlation and nearly equal log variances, the estimated baseflow parameters are very accurate. We tested the proposed method using long‐term streamflow data from two watershed pairs in the Driftless Area of southwestern Wisconsin. For one watershed pair, the theoretical assumptions are well met; for the other the log‐variances are substantially different. In the first case, the method performs well for estimating both annual and long‐term baseflow parameters. In the second, the method performs remarkably well for estimating annual mean and annual median baseflow discharge, but less well for estimating the annual lower decile and the long‐term mean, median, and lower decile. In general, the use of four measurements in a year is not substantially better than the use of two.  相似文献   

13.
Wetlands are critical natural resources in developing countries where they perform a range of environmental functions and provide numerous socio-economic benefits to local communities and a wider population. In recent years, however, many wetlands throughout eastern Africa have come under extreme pressure as government policies, socio-economic change and population pressure have stimulated a need for more agriculturally productive land. Although wetland drainage and cultivation can make a key contribution to food and livelihood security in the short term, in the long term there are concerns over the sustainability of this utilization and the maintenance of wetland benefits. This article draws upon recent research carried out in western Ethiopia, which addressed the sustainability of wetland agriculture in an area of increasing food insecurity and population pressure. It discusses the impacts of drainage and cultivation on wetland hydrology and draws attention to local wetland management strategies, particularly those characterized by multiple use of wetlands, where agriculture exists alongside other wetland uses. The article suggests that where multiple wetland uses exist, a range of benefits can be sustained with little evidence of environmental degradation. Ways of promoting and empowering such sustainable wetland management systems are discussed in the context of the wider need for water security throughout the region.  相似文献   

14.
Short‐term agricultural drought and longer term hydrological drought have important ecological and socioeconomic impacts. Soil moisture monitoring networks have potential to assist in the quantification of drought conditions because soil moisture changes are mostly due to precipitation and evapotranspiration, the two dominant water balance components in most areas. In this study, the Palmer approach to calculating a drought index was combined with a soil water content‐based moisture anomaly calculation. A drought lag time parameter was introduced to quantify the time between the start of a moisture anomaly and the onset of drought. The methodology was applied to four shortgrass prairie sites along a North‐South transect in the U.S. Great Plains with an 18‐year soil moisture record. Short time lags led to high periodicity of the resulting drought index, appropriate for assessing short‐term drought conditions at the field scale (agricultural drought). Conversely, long time lags led to low periodicity of the drought index, being more indicative of long‐term drought conditions at the watershed or basin scale (hydrological drought). The influence of daily, weekly, and monthly time steps on the drought index was examined and found to be marginal. The drought index calculated with a short drought lag time showed evidence of being normally distributed. A longer data record is needed to assess the statistical distribution of the drought index for longer drought lag times.  相似文献   

15.
A constructed wetland (CW) was strategically placed to treat nitrates in groundwater as part of a watershed‐based farmer engagement process. Using stream water quality data collected before and after installation, this CW was found to reduce stream concentrations of nitrogen from nitrate (NO3‐N) during the growing season by about 0.14 mg/l at mean streamflow, a 17% reduction. Based upon realistic ecological and economic assumptions, about 80 kg of NO3‐N were removed annually by the CW at a cost of around US$30/kg. This per unit cost is at the low range of small wastewater treatment plant costs for nitrates, but higher than the costs of reduced fertilizer application.  相似文献   

16.
The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.  相似文献   

17.
Agricultural runoff carries high nutrient loads to receiving waters, contributing to eutrophication. Managed wetlands can be used in integrated management efforts to intercept nutrients before they enter downstream aquatic systems, but detailed information regarding sorption and desorption of P by wetland sediments during typical inundation cycles is lacking. This study seeks to quantify and elucidate how inundation of wetland sediments affects bioavailability of P and contributions of P to downstream systems. A managed wetland cell in Tunica County, Mississippi was subjected to a simulated agricultural runoff event and was monitored for bioavailable phosphorus (water-extractable P [P], Fe-P, and Al-P) of wetland sediments and water level during the runoff event and for 130 d afterward. Inundation varied longitudinally within the wetland, with data supporting significant temporal relationships between inundation and P desorption. Concentrations of P were significantly higher at the site that exhibited variable hydroperiods (100 m) as compared with sites under consistent inundation. This suggests that sites that are inundated for longer periods of time desorb less P immediately to the environment than sites that have periodic or ephemeral inundation. Concentrations of iron oxalate and NaOH-P were significantly higher at the least inundated site as compared with all other sites (F = 5.43; = 0.001) irrespective of time. These results support the hypothesis that increased hydraulic residence time decreases the bioavailability of P in wetland sediments receiving agricultural runoff. This finding suggests that the restoration of wetlands in the mid-southern United States may be hydrologically managed to improve P retention.  相似文献   

18.
ABSTRACT: Field experiments were conducted from 1992 to 1995 to estimate ground water recharge rates at two sites located within a 2.7‐hectare agricultural field. The field lies in a sand plain setting in central Minnesota and is cropped continuously in field corn. The sites are located at a topographically high (upland) site and a topographically low (lowland) site in an effort to quantify the effects of depression focusing of recharge. Three site‐specific methods were used to estimate recharge rates: well hydrograph analysis, chlorofluorocarbon age dating, and an unsaturated zone water balance. All three recharge methods indicated that recharge rates at the lowland site (annual average of all methods of 29 cm) exceeded those at the upland site (annual average of 18 cm). On an annual basis, estimates by the individual methods ranged from 12 to 44 percent of precipitation at the upland site and from 21 to 83 percent at the lowland site. The difference in recharge rates between the sites is primarily attributed to depression focusing of surface water runon at the lowland site. However, two other factors were also important: the presence of thin lamellae at the upland site, and coarser textured soils below a depth of 1.5 m at the lowland site.  相似文献   

19.
ABSTRACT: Fifty‐four Wisconsin wetlands were surveyed in spring 1996 to determine relationships between macroinvertebrate community structure and a suite of 11 environmental attributes. Canonical correspondence analysis (CCA) showed that, after alkalinity, hydroperiod was the next most significant environmental factor influencing macroinvertebrate community structure within the wetlands sampled. CCA and direct gradient biplots were used to identify indicator taxa characteristic of the spring macroinvertebrate communities in persistent and ephemeral wetlands, and taxa characteristic of semi‐terrestrial habitats adjacent to wetlands. Two models were developed to permit the prediction of a wetland's hydroperiod class. One model assigns a range of probabilities that a wetland has a hydroperiod longer or shorter than eight months based on the occurrence or abundance of fairy shrimp, mayflies, scuds, mosquitoes, and phantom midges. A second model predicts that a wetland's hydroperiod is longer or shorter than five months based on the joint occurrences of seven persistent indicator taxa. Data used in both models were derived from a rapid bioassessment of three shoreline D‐frame net sweeps. The use of a coarse level taxonomic identification (primarily order and family) allows the approach to be performed in the field or laboratory. The macroinvertebrate models allow a manager to estimate a wetland's hydroperiod when long term water duration records do not exist. This ability is important to water resource managers because hydroperiod classification (i.e., water permanency) is one criterion used in differentiating wetlands from lakes in Wisconsin and because Wisconsin's legal system affords lakes substantially greater protection than wetlands.  相似文献   

20.
Abstract: In 2006, we collected flow, sediment, and phosphorus (P) data at stream locations upstream and downstream of a small degraded wetland in south‐central Wisconsin traversed by a stream draining a predominantly agricultural watershed. The amount of sediment that left the wetland in the two largest storms, which accounted for 96% of the exported sediment during the observation period, was twice the amount that entered the wetland, even though only 50% of the wetland had been inundated. This apparently anomalous result is due to erosion of sediment that had accumulated in the low‐gradient channel and to the role of drainage ditches, which trapped sediment during the wetland‐filling phase. In the case of total P, the inflow to the wetland approximately equaled the outflow, although the wetland sequestered 30% of the incoming dissolved reactive P. The discrepancy is almost certainly due to net export of sediment. Many wetlands in the glaciated midwestern United States are ditched and traversed by low‐gradient channels draining predominantly agricultural areas, so the processes observed in this wetland are likely to be common in that region. Knowledge of this behavior presents opportunities to improve water quality in this and similar regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号