首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT: This study determines the most cost effective spatial pattern of farming systems for improving water quality and evaluates the economic value of riparian buffers in reducing agricultural nonpoint source pollution in a Midwestern agricultural watershed. Economic and water quality impacts of alternative farming systems are evaluated using the CARE and SWAT models, respectively. The water quality benefits of riparian buffers are estimated by combining experimental data and simulated water quality impacts of fanning systems obtained using SWAT. The net economic value of riparian buffers in improving water quality is estimated by total watershed net return with riparian buffers minus total watershed net return without riparian buffers minus the opportunity cost of riparian buffers. Exclusive of maintenance cost, the net economic value of riparian buffers in reducing atrazine concentration from 45 to 24 ppb is $612,117 and the savings in government cost is $631,710. Results strongly support efforts that encourage farmers to develop or maintain riparian buffers adjacent to streams.  相似文献   

2.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   

3.
Ecosystem processes such as water infiltration and denitrification largely determine how riparian buffers function to protect surface water quality. Reclaimed mine areas offer a unique opportunity to study the restoration of riparian function without the confounding influence of past land use. Between 1980 and 2000 in southern Illinois, agricultural fields with forest buffers were established along three restored stream reaches in reclaimed mine land. Our research objective was to compare common indicators of soil quality (infiltration, soil C and N, bulk density, and soil moisture) between forest and cultivated riparian zones to determine if riparian function was being restored. Soil bulk density was significantly lower in the forest buffers compared to the agricultural fields. The forest buffers had greater soil total C, total N, and moisture levels than agricultural fields likely due to greater organic matter inputs. Soil total C and N levels in forest buffers were positively related to age of restoration, indicating soil quality is gradually being restored in the buffers. Restoration success of riparian buffers should not be estimated by the return of structure alone; it also includes reestablishment of functions such as nutrient cycling and water retention that largely determine water quality benefits. Watershed planning efforts can expect a lag time on the order of decades between riparian restoration activities and surface water quality improvement.  相似文献   

4.
5.
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.  相似文献   

6.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   

7.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

8.
Abstract: This study evaluates the economic value of riparian buffers and open space in a suburban watershed through two nonmarket valuation methods. A contingent valuation survey was implemented in the Dardenne Creek watershed, a suburban watershed of the St. Louis metropolitan area in Missouri, to evaluate the residents' perceptions of and willingness to pay (WTP) for adopting riparian buffers and preserving farmland in a hypothetical real estate market. A hedonic pricing model based on actual sale prices of homes in the watershed was applied to estimate the market value of open space and other environmental conditions such as flood zone and stream proximity in the study area. The results showed that residents' WTP was consistent with the economic values of open space and proximity to streams embedded in existing home prices. Through a better understanding of residents' perceptions and values, riparian buffer and open space programs can be designed and promoted to achieve greater implementation success and environmental benefit.  相似文献   

9.
Several environmental protection policies have been implemented to prevent soil erosion and nonpoint source (NPS) pollutions in China. After severe Yangtze River floods, the “conversion cropland to forest policy” (CCFP) was carried out throughout China, especially in the middle and upper reaches of Yangtze River. The research area of the current study is located in Bazhong City, Sichuan Province in Yangtze River watershed, where soil erosion and NPS pollution are serious concerns. Major NPS pollutants include nitrogen (N) and phosphorus (P). The objective of this study is to evaluate the long-term impact of implementation of the CCFP on stream flow, sediment yields, and the main NPS pollutant loading at watershed level. The Soil and Water Assessment Tool (SWAT) is a watershed environmental model and is applied here to simulate and quantify the impacts. Four scenarios are constructed representing different patterns of conversion from cropland to forest under various conditions set by the CCFP. Scenario A represented the baseline, i.e., the cropland and forest area conditions before the implementation of CCFP. Scenario B represents the condition under which all hillside cropland with slope larger than 25° was converted into forest. In scenario C and D, hillside cropland with slope larger than 15° and 7.5° was substituted by forest, respectively. Under the various scenarios, the NPS pollution reduction due to CCFP implementation from 1996–2005 is estimated by SWAT. The results are presented as percentage change of water flow, sediment, organic N, and organic P at watershed level. Furthermore, a regression analysis is conducted between forest area ratio and ten years’ average NPS load estimations, which confirmed the benefits of implementing CCFP in reducing nonpoint source pollution by increasing forest area in mountainous areas. The reduction of organic N and organic P is significant (decrease 42.1% and 62.7%, respectively) at watershed level. In addition, this study also proves that SWAT modeling approach can be used to estimate NPS pollutants’ impacts of land use conversions in large watershed.  相似文献   

10.
Human alterations to the Iowa landscape, such as elimination of native vegetation for row crop agriculture and grazing, channelization of streams, and tile and ditch drainage, have led to deeply incised channels with accelerated streambank erosion. The magnitude of streambank erosion and soil loss were compared along Bear Creek in central Iowa. The subreaches are bordered by differing land uses, including reestablished riparian forest buffers, row crop fields, and continuously grazed riparian pastures. Erosion pins were measured from June 1998 to July 2002 to estimate the magnitude of streambank erosion. Total streambank soil loss was estimated by using magnitude of bank erosion, soil bulk density, and severely eroded bank area. Significant seasonal and yearly differences in magnitude of bank erosion and total soil loss were partially attributed to differences in precipitation and associated discharges. Riparian forest buffers had significantly lower magnitude of streambank erosion and total soil loss than the other two riparian land uses. Establishment of riparian forest buffers along all of the nonbuffered subreaches would have reduced stream‐bank soil loss by an estimated 77 to 97 percent, significantly decreasing sediment in the stream, a major water quality problem in Iowa.  相似文献   

11.
ABSTRACT: Nitrogen (N) fertilizer rates for achieving optimum crop yields often vary within a field due to spatial variability in soil moisture and nitrogen content and other crop growth factors. When there is substantial within-field variability in these factors, uniform application of N (UAN) may not be economically efficient in terms of maximizing net return because N is likely to be over-applied in some areas and under-applied in other areas of the field. In addition, over-application can adversely affect water quality. A sample of fields in a Midwestern agricultural watershed is used to test for statistically significant differences in N application rates, crop yields, surface and ground water quality and net returns between UAN and variable application of N (VAN) for four cropping systems. Profitability and water quality benefits of VAN are sensitive to the distribution of soil types within a field. Water quality effects and profitability of UAN and VAN vary with cropping systems. VAN is not uniformly superior to UAN in terms of increasing net returns and improving water quality for the farming systems and watershed evaluated in this study.  相似文献   

12.
ABSTRACT: Riparian buffers are considered important management options for protecting water quality. Land costs and buffer performance, which are functions of local environmental characteristics, are likely to be key attributes in the selection process, especially when budgets are limited. In this article we demonstrate how a framework involving hydrologic models and binary optimization can be used to find the optimal buffer subject to a budget constraint. Two hydrologic models, SWAT and REMM, were used to predict the loads from different source areas with and without riparian buffers. These loads provided inputs for a binary optimization model to select the most cost efficient parcels to form a riparian buffer. This methodology was applied in a watershed in Delaware County, New York. The models were parameterized using readily available digital databases and were later compared against observed flow and water quality data available for the site. As a result of the application of this method, the marginal utility of incremental increases in buffer widths along the stream channel and the set of parcels to form the best affordable riparian buffer were obtained.  相似文献   

13.
Creating and restoring wetland and riparian ecosystems between farms and adjacent streams and rivers in the Upper Mississippi River Basin would reduce nitrogen loads and hypoxia in the Gulf of Mexico and increase local environmental benefits. Economic efficiency and economic impacts of the Hennepin and Hopper Lakes Restoration Project in Illinois were evaluated. The project converted 999 ha of cropland to bottomland forest, backwater lakes, and flood‐plain wetland habitat. Project benefits were estimated by summing the economic values of wetlands estimated in other studies. Project costs were estimated by the loss in the gross value of agricultural production from the conversion of corn and soybean acreage to wetlands. Estimated annual net benefit of wetland restoration in the project area amounted to US$1,827 per ha of restored wetland or US$1.83 million for the project area, indicating that the project is economically efficient. Impacts of the project on the regional economy were estimated (using IMPLAN) in terms of changes in total output, household income, and employment. The project is estimated to increase total output by US$2,028,576, household income by US$1,379,676, and employment by 56 persons, indicating that it has positive net economic impacts on the regional economy.  相似文献   

14.
We assessed the relationship between riparian management and stream quality along five southeastern Minnesota streams in 1995 and 1996. Specifically, we examined the effect of rotationally and continuously grazed pastures and different types of riparian buffer strips on water chemistry, physical habitat, benthic macroinvertebrates, and fish as indicators of stream quality. We collected data at 17 sites under different combinations of grazing and riparian management, using a longitudinal design on three streams and a paired watershed design on two others. Continuous and rotational grazing were compared along one longitudinal study stream and at the paired watershed. Riparian buffer management, fenced trees (wood buffer), fenced grass, and unfenced rotationally grazed areas were the focus along the two remaining longitudinal streams. Principal components analysis (PCA) of water chemistry, physical habitat, and biotic data indicated a local management effect. The ordinations separated continuous grazing from sites with rotational grazing and sites with wood buffers from those with grass buffers or rotationally grazed areas. Fecal coliform and turbidity were consistently higher at continuously grazed than rotationally grazed sites. Percent fines in the streambed were significantly higher at sites with wood buffers than grass and rotationally grazed areas, and canopy cover was similar at sites with wood and grass buffers. Benthic macroinvertebrate metrics were significant but were not consistent across grazing and riparian buffer management types. Fish density and abundance were related to riparian buffer type, rather than grazing practices. Our study has potentially important implications for stream restoration programs in the midwestern United States. Our comparisons suggest further consideration and study of a combination of grass and wood riparian buffer strips as midwestern stream management options, rather than universally installing wood buffers in every instance. RID=" ID=" The Unit is jointly sponsored by the US Geological Survey, Biological Resources Division; the Minnesota Department of Natural Resources; the University of Minnesota; and the Wildlife Management Institute.  相似文献   

15.
Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.  相似文献   

16.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

17.
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.  相似文献   

18.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

19.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   

20.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号