首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The jute yarn was grafted with acrylamide monomer (AA) under ultraviolet (UV) radiation to modify its mechanical and degradable properties. A number of AA solutions of different concentrations in methanol (MeOH) along with photoinitiator Irgacure 907 [2-methyl-1-(4-methylthiophenyl)-2-morpholinopropanone-1] were prepared. The monomer concentration and irradiation time were optimized. Jute yarn grafted with 30% AA under UV radiation for 60 min showed of the highest polymer loading (PL) value of 22% with a enhanced tensile strength (TS) value of 195% and elongation at break (Eb) value of 256% compared to untreated jute yarn. To further improve the properties of jute yarn, a number of additives (1%) such as urea, polyvinylpyrrolidone, urethane acrylate, and urethane diacrylate were used in the AA (30%) solution. Among all the additives used, urea significantly influenced the PL (27%), TS (230%), and Eb (264%) values of the treated jute yarns. Water uptake and the degradation properties of treated and untreated jute yarn caused by simulated weathering and in soil (25% water) were also studied. The rate of degradation of grafted sample is lower then that of untreated sample. DSC studies showed the thermal stability of the AA plus urea grafted sample.  相似文献   

2.
This paper mainly focuses on the fabrication process of long fibre reinforced unidirectional thermoplastic composites made using both natural (untreated) treated jute yarns. Jute yarns were wound in layers onto a metallic frame. Polypropylene films were inserted between these layers and compression moulded to fabricate unidirectional jute/PP composite specimens. Static mechanical properties were evaluated from tensile three point bending tests. Pre- post-failure examination were carried out on the test specimens using optical scanning electron microscopy to analyse the test results and investigate the correlations between their impregnation state, processing conditions, mechanical performances and fracture morphologies. For the unidirectional jute/PP film-stacked composites, the results indicated that the processing condition at the moulding temperature of 160°C and moulding pressure of 2.0 MPa for 15 min was ideally suited to obtain optimized properties. Improved wettability of resin melts due to complete matrix fusion at this processing condition facilitated thorough impregnation with minimum microstructural imperfections (microvoids) being generated. Jute/PP composites that contained treated jute yarns have shown superiority in tensile bending properties. Jute yarns polished or coated with PVA/PP (polyvinyl alcohol/polypropylene) must have contributed positively to fibre/matrix interfacial interactions leading to matrix to fibre effective stress transfer, thereby improving their reinforcing effects. Tensile strength and modulus of PP resin increased by approximately 285% and 388%, respectively, due to 50 wt% reinforcement by natural jute yarns. Further improvements in strength and modulus were achieved by approximately 14% and 10%, respectively, when treated yarns were used . The maximum bending stress modulus of jute/PP composites containing untreated yarns were approximately 190% and 460% higher than those of the virgin PP materials, and bending properties were improved by further 11% and 23%, respectively, due to coating treatments on the yarn surface.  相似文献   

3.
To improve the mechanical performance of natural lignocellulosic jute yarn, grafting with [3-(trimethoxysilyl) propylmethacrylate] (TMSPM) monomer has been performed on in situ UV radiation and optimized the monomer concentration (30%) and irradiation time (30 min). Effect of various amino acids (1%) as additives in TMSPM with photografted jute yarn at optimized system has been studied. The polymer loading (PL) and tensile properties like tensile strength (TS) and elongation at break (Eb) of treated samples were enhanced by incorporation of amino acids and the highest properties (TS = 300% and Eb = 386%) achieved by the sample treated with l-Arginine (Arg) with 32.5% PL value. Weak acid like 3% acetic acid and inorganic acid like 1% sulfuric acid were also incorporated in the optimized system of TMSPM grafting and compared their effect on the tensile properties with amino acid treated samples. Water absorption and weathering resistance of treated and untreated samples were also performed and treated sample showed lesser water uptake as well as less weight loss and mechanical properties as compared to untreated samples.  相似文献   

4.
Thin films of gelatin were prepared by casting. Then the films were photocured and the mechanical properties were studied. The tensile strength of UV cured gelatin films showed about 10% enhancement than that of raw gelatin films. Minor amount of urea (1–5%) was used as additive in aqueous gelatin solution and films were prepared using same technique. Four formulations were prepared in methanol with 2-ethylhexyl acrylate in the presence of photoinitiator (darocur-1664). The films were soaked in the prepared formulations and then cured under UV radiation at different intensities (5–25 passes). Percentage of urea, monomer concentration, soaking time and radiation intensities were optimized with the extent of polymer loading, TS and elongation at break of the photocured film. The films containing 2% urea, cured with 3% EHA for 3 min at 15th UV pass showed the highest mechanical properties. A significant improvement of TS (31%) occurred when EHA (3%) was incorporated.  相似文献   

5.
Natural polymer, chitosan was obtained from dried prawn shell waste through the preparation of chitin and was characterized. Thin film of chitosan was prepared by casting method from its 2% chitosan solution. Mechanical properties like tensile strength (TS), elongation at break (Eb) of chitosan film were studied. Five formulations were developed with 2-ethyl-2-hydroxy methyl-1,3-propandiol trimethacrylate (EHMPTMA), a trifunctional monomer and 2-ethylhexyl acrylate (EHA), a monofunctional monomer in the presence of photoinitiator Darocur-1664 (2%). The film was soaked in those monomer formulations in dissimilar soaking times and irradiated under UV-radiation at different radiation intensities for the improvement of the properties of chitosan film. The cured films were then subjected to various characterization tests like TS, Eb, polymer loading (PL), water absorbency, gel content etc. The formulation, containing 25% EHMPTMA and 73% EHA showed the best performance at 10th UV passes of UV radiation for 4 min soaking time.  相似文献   

6.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

7.
Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. In this paper jute fiber filled PLA resin (jute/PLA) composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet fabricated by pultrusion technique was adopted to prepare jute/PLA pellet. Because it is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of PLA melting temperature i.e. impregnation temperature and the kinds of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. Additionally, thermal and mechanical properties were investigated. It is found that 250° is much suitable for jute/PLA long fiber pultrusion process because of its less heat degradation of jute, better impregnation, acceptable mechanical property and higher production efficiency. Additionally the jute fibers seem much effective to increase deflection temperature under load, tensile modulus and Izod strength.  相似文献   

8.
Fabrication of complex injection molded parts often involves the use of multiple gates. In such situations, polymer melts from different gates meld to form the molded part (weld line). This paper reports on the fabrication and characterization of the mechanical and morphological properties of short fiber reinforced jute/poly butylene succinate (PBS) biodegradable composites. The effect of a dual gated mold in the fabrication of welded specimens was a key focus of the investigation. It was observed that incorporation of jute fiber (10 wt%) conferred drastic changes on the stress–strain properties of the matrix as the elongation at break (EB), dropped from 160% in the matrix to just 10% in the composite. The tensile strength of the composite was lower than that of the matrix. However, it is noteworthy that the tensile modulus of the composite increased. Bending test also revealed that both bending strength and modulus increased with the incorporation of jute. Morphological studies of the tensile fracture surface using SEM revealed two types of failure mode. Ductile failure was indicated by plastic deformation at the initiation of fracture followed by brittle failure. The good interfacial bonding indicated between jute and PBS was attributed to positive interaction between the two polar polymers. A comparison of the non-weld and weld-line samples revealed that the weld-line composites have better mechanical integrity than the corresponding polymer matrix with weld line. The results also revealed that elongation at break and toughness are most sensitive to the presence of the weld-line whereas flexural properties are least sensitive.  相似文献   

9.
In order to further improve the physical properties of plywood surface that was pretreated with UV and Gamma radiation at different radiation intensities before photocuring. After pretreatment with radiation the plywood surface was coated with different prepared formulations containing epoxyacrylate (EA-1020) as an oligomer, difunctional monomers such as tripropylene glycol diacrylate (TPGDA), 2-hexadioldiacrylate (HDDA), Ethylene Glycol dimethacrylate (EGDMA) and trifunctional monomer trimethyl propen triacrylate (TMPTA) with photoinitiator Darocur 1664. Thin polymer films were prepared on glass plate with these formulated solutions and cured under UV radiation. Pendulum hardness (PH) and gel content of the film were studied for selecting the formulations as top coat and as base coat. The polished plywood surface was coated with selected formulation and cured under UV radiation. Various rheological properties of UV cured plywood surface such as pendulum hardness, scratch hardness, microgloss, adhesion strength, percentage chipped off area and abrasion resistance were studied.  相似文献   

10.
Soy isolate was treated with formaldehyde and glyoxal at 1.0, 2.5, and 5.0% (w/w isolate) and with adipic and acetic anhydrides. The materials were then compression-molded into plastic tensile bars and tested for tensile and yield strength, percentage elongation, Young's modulus, and water absorption. Treatment with 5% formaldehyde increased the tensile strength significantly, to 4.9 kg/mm2, compared with the untreated sample (3.7 kg/mm2). The yield strength increased slightly, to 0.68 kg/mm2. Elongation was significantly less after treatment with formaldehyde. Young's modulus increased after treatment and leveled off at 174 kg/mm2. Water absorption decreased as the formaldehyde concentration increased. Treatment with either glyoxal or adipic/acetic anhydride had a detrimental effect on the mechanical properties of the plastic specimens. Water absorption was decreased by glyoxal treatment but was not affected by adipic/acetic anhydride treatment. Long-fiber (lf), short-fiber (sf), and microcrystalline (mc) cellulose were incorporated into soy isolate at various levels. Cellulose addition decreased the percentage elongation and increased the rigidity of the plastic. All three cellulose additions increased Young's modulus. The tensile strength increased with the addition of sf-cellulose to soy isolate; lf-cellulose decreased the tensile strength, whereas the incorporation of mc-cellulose did not have a significant effect. The yield strength increased slightly with the addition of sf-cellulose and was less affected by the addition of lf- or mc-cellulose. All three types of cellulose slightly decreased water absorption at ca. 15% content.Journal Paper No. J-15563 of the Iowa Agriculture and Home Economics Experiment Station, Ames; Project No. 2863.  相似文献   

11.
The aim of the present study is to investigate mechanical and morphological properties of pineapple leaf fibres (PALF) reinforced phenolic composites and its comparison with kenaf fibre (KF)/phenolic composites. Mechanical properties (tensile, flexural and impact) of untreated and treated PALF phenolic composites at different fibre loading were investigated. Tensile, flexural and impact properties of PALF and kenaf/phenolic composites were analyzed as per ASTM standard. Morphological analysis of tensile fracture samples of composites was carried out by scanning electron microscopy. Obtained results indicated that treated PALF/phenolic composites at 50% PALF loading exhibited better tensile, flexural and impact properties as compared to other untreated PALF/phenolic composites. Treated kenaf/phenolic composites at 50% fibre loading showed better tensile, flexural and impact properties than untreated kenaf/phenolic composite. It is concluded that treated 50% fibre loading kenaf and PALF/phenolic composites showed better mechanical properties than untreated kenaf and PALF/phenolic composites due to good fibre/matrix interfacial bonding. Results obtained in this study will be used for the further study on hybridization of PALF and KF based phenolic composites.  相似文献   

12.
In this research, hybrid composite materials were prepared from combination of oil palm Empty fruit bunches (EFB) fibre and jute fibre as reinforcement, epoxy as polymer matrix. This study intended to investigate the effect of jute fiber hybridization and different layering pattern on the physical properties of oil palm EFB-Epoxy composites. Water absorption and thickness swelling test reveal that hybrid composite shows a moderate water absorption which is 11.20% for hybrid EFB/Jute/EFB composite and 6.08% for hybrid Jute/EFB/Jute composite. The thickness swelling and water absorption of the hybrid composites slightly increased as the layering pattern of hybrid composites changed. Hybrid composites are more water resistance and dimensional stable compare to the pure EFB composites. This is attributed to the more hydrophilic nature of EFB composites. Hybridization of oil palm EFB composites with jute fibres can improve the dimensional stability and density of pure EFB and Jute fibre reinforced composites has higher density of 1.2 g/cm3 compared to all other composites.  相似文献   

13.
Three to four billion pounds of chicken feathers are wasted in the United States annually. These feathers pose an environmental challenge. In order to find a commercial application of these otherwise wasted feathers, composites have been prepared from feathers. Flexural, impact resistance, and sound dampening properties of composites from chicken feather fiber (FF) and High Density Polyethylene/Polypropylene (HDPE/PP) fiber have been investigated and compared with pulverized chicken quill-HDPE/PP, and jute-HDPE/PP composites. Sound dampening by FF composites was 125% higher than jute and similar to quill although mechanical properties were inferior to the latter two. In ground form, FF and jute composite properties were similar except for 34% higher modulus of jute; under the same formulation and processing conditions, ground FF composites had nearly 50% lower mechanical properties compared with ground quill composites. It was found that voids and density of composites have effect on mechanical and sound dampening properties; however, no direct relationship was found between mechanical properties and sound dampening.  相似文献   

14.
A series of formulations were prepared with different percentages of oligomer, epoxy diacrylate (EA-1020 ), monomer, 1,6 Hexane diol diacrylate,(HDDA) and different percentages of filler (Magnesium tri-silicate, Mg2Si3O8). Irgacure 369 [2-Benzyl-2-dimethyl-amine-1 (4-morpholinophenyl) butanone-1] was used in the formulations as photoinitiator. Ultraviolet (UV) cured thin polymer films were prepared from these formulating solutions on clean glass plates. Pendulum hardness (PH), gel content and macro scratch hardness (MSH) of the UV cured films were studied. One percent Mg2Si3O8 containing formulation showed the premium properties. The substrates (plain board) were coated by these formulating solutions and cured under the same UV lamp at different intensities of radiation. Various properties of the coated surface such as PH, gloss, adhesion, abrasion and MSH were investigated. The base coat containing 1% Mg2Si3O8 and top coat containing 48% HDDA produced the best performance among all the formulations inspected. The degradable properties in different weathering conditions on PH, gloss, adhesion, abrasion and MSH were measured. The surface cured with the optimized formulation (E) again yielded the minimum loss of the properties.  相似文献   

15.
Chitosan, a natural polymer, was prepared by deacetylation of chitin which was obtained from dried prawn shell and was characterized. Thin chitosan film of chitosan was prepared by casting method from 0.2 % chitosan in 2 % acetic acid solution. Five formulations were developed with ethylene glycol dimethacrylate and (2-hydroxyethyl) methacrylate along with photo-initiator, Darocur-1664 (4 %). The chitosan film was soaked in the formulations at different soaking times and irradiated under UV-radiation at different intensities for the improvement of its physical and mechanical properties. The cured chitosan films were then subjected to various mechano-chemical tests like tensile strength, elongation at break, polymer loading, water absorption and gel content. The formulation containing 30 % ethylene glycol dimethacrylate and 66 % (2-hydroxyethyl) methacrylate showed the best performance at the 30th UV pass of UV-radiation for 3 min soaking time.  相似文献   

16.
Application of Cellulose Microfibrils in Polymer Nanocomposites   总被引:1,自引:0,他引:1  
Cellulose microfibrils obtained by the acid hydrolysis of cellulose fibers were added at low concentrations (2–10% w/w) to polymer gels and films as reinforcing agents. Significant changes in mechanical properties, especially maximum load and tensile strength, were obtained for fibrils derived from several cellulosic sources, including cotton, softwood, and bacterial cellulose. For extruded starch plastics, the addition of cotton-derived microfibrils at 10.3% (w/w) concentration increased Young’s modulus by 5-fold relative to a control sample with no cellulose reinforcement. Preliminary data suggests that shear alignment significantly improves tensile strength. Addition of microfibrils does not always change mechanical properties in a predictable direction. Whereas tensile strength and modulus were shown to increase during addition of microfibrils to an extruded starch thermoplastic and a cast latex film, these parameters decreased when microfibrils were added to a starch–pectin blend, implying that complex interactions are involved in the application of these reinforcing agents.  相似文献   

17.
Polypropylene (PP) has achieved a dominating position and hence, their consumption increases thereby littering, which lead to environmental pollution. Photodegradation seems to be a better choice because of naturally available sunlight as energy source for degradation. The present work involves the study of the variation of degradation behavior of PP film during tropical summer and winter seasons. The photodegradation is followed by Fourier transform infrared (FTIR) spectroscopic technique. Various indices like hydroxyl, carbonyl, vinylidene, lactones, ester, carboxylic acid and crystallinity are calculated and these values increased after a brief induction period. The variation in the mechanical properties like tensile strength and elongation at break percentages are determined. The scanning electron microscopic (SEM) images of weathered PP showed surface cracks when carbonyl index value increases sharply and the mechanical properties show a sudden decrease. Attempted life time prediction using mathematical models showed that the carbonyl growth is more affected by ultraviolet (UV) and cumulative total solar radiation for PP weathered during summer. The loss in tensile strength of PP weathered during summer is more dependent on the average temperature and the UV portion of the total solar radiation whereas, intensity of UV radiation has profound effect on the tensile strength of PP weathered during winter.  相似文献   

18.
To develop an environmentally degradable polymer material, a masterbatch pro-oxidant system was blended into low-density polyethylene. The polymer film samples were prepared by compression molding. The prepared films were placed under the natural environment of Tehran for weathering studies and accelerated conditions were also performed for UV aging in UV chamber. At different time intervals, the changes in chemical structure of photosensitized polyethylene samples were studied by FTIR and compared to that of the control polyethylene films. Also the mechanical properties of photosensitized polyethylene films were determined in comparison with the control films by measuring the tensile strength and elongation at break after exposure to the natural environment and UV radiation. Results showed that the overall rate of degradation process is clearly dependent on the polyethylene composition, test conditions (natural or accelerated), season of the year, and the duration of the weathering of the samples.  相似文献   

19.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

20.
30 wt% aligned untreated long hemp fibre/polylactic acid (AUL) and aligned alkali treated long hemp fibre/polylactic acid (AAL) composites were produced by film stacking and subjected to hygrothermal ageing environment along with neat polylactic acid (PLA). Hygrothermal ageing was carried out by immersing samples in distilled water at 25 and 50 °C over a period of 3 months. It was found that both neat PLA and composites followed Fickian diffusion. Higher temperature generally increased the Diffusion coefficient, D of neat PLA and composites, as well as shortening the saturation time. Neat PLA had the lowest D value followed by AAL composites and then AUL composites. After hygrothermal ageing, tensile and flexural strength, Young’s and flexural modulus and K Ic were found to decrease and impact strength was found to increase for both AUL and AAL composites. AUL composites had greater overall reduction in mechanical properties than that for AAL composites after hygrothermal ageing. Crystallinity contents of the hygrothermal aged composites support the results of the deterioration of mechanical properties upon exposure to hygrothermal ageing environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号