首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
采用气相色谱/质谱联用技术(GC/MS)检测了柳州市大气颗粒物样品中的PAHs,比较了柳州市各区大气颗粒物中多环芳烃含量的差异以及不同季节对多环芳烃含量的影响,讨论了其分布规律及污染源.  相似文献   

2.
对2012年郑州市大气中气态和颗粒态多环芳烃(PAHs)的分布特征与来源进行了分析。结果表明,ρ(∑PAHs)(包括气相与颗粒相)为23.27~194.61 ng/m3,气相中∑PAHs高于颗粒相,四环以下的PAHs大都存在于气态中;在夏、春2季,较小分子质量(≤178)的PAHs占比较高,冬季,较大分子质量(≥252)的PAHs占比明显较高;各功能区ρ(PAHs)排序为工业区交通密集区医疗、文化、行政混合区。郑州大气和颗粒物中PAHs可能主要来自煤和液体燃料(汽油柴油)的燃烧。  相似文献   

3.
采用恒能量同步荧光法检测了龙岩市大气颗粒物样品中的多环芳烃(PAHs),比较了龙岩市区大气颗粒物中多环芳烃含量的差异以及不同季节对多环芳烃含量的影响,讨论了其分布规律及污染源。  相似文献   

4.
多环芳烃(PAH)的产生是由于矿物燃料和工业生产过程中其它有机物质的不完全燃烧并以颗粒状态存在于大气中,因为PAH多数涉及到诱变或者致癌的.  相似文献   

5.
南京某县空气、土壤中多环芳烃的分布及来源   总被引:3,自引:0,他引:3  
采用建立的采样及分析监测程序对南京某县空气、土壤中的多环芳烃进行了调查监测,探讨了多环芳烃在空气、土壤中的分布特征、相关性及可能的污染来源.  相似文献   

6.
为了解莱芜市大气污染源排放颗粒物中多环芳烃的浓度及影响因素,采集机动车尾气尘、扬尘、工业燃煤颗粒物、民用燃煤颗粒物等4种样品,分别测定多环芳烃的含量。结果表明,莱芜市大气环境颗粒物中多环芳烃主要来源于机动车尾气和民用燃煤,12种多环芳烃类值分别为(1 536. 48±0. 78)和(299. 83±0. 30)μg/g,机动车尾气尘与扬尘、民用燃煤、工业燃煤多环芳烃均存在显著性差异。不同组分中,苯并(ghi)苝的值最高,为(559. 96±7. 59)μg/g,其次为晕苯,为(445. 36±5. 94)μg/g,城市空气污染呈现煤烟和机动车尾气复合污染的特点。  相似文献   

7.
于2006年4月到2007年8月在泰安市城北设立采样点收集降水样品,对样品中的13种美国环保署(US EPA)优控多环芳烃(PAHs)及NO3-、SO42-等无机阴、阳离子进行了定量分析.测定结果表明,雨水样品中∑13PAHs含量范围在11.3~179.4ng/L之间,平均浓度为89.8ng/L;NO3-、SO42-分别在16.35~186.4ueq/L及53.83~721.9ueq/L之间;样品中无机阴、阳离子总和之比∑(+)/∑(-)的平均值为0.93.相关分析表明,样品中菲、芴、萤蒽等3、4环多环芳烃化合物含量较高;样品中的PAHs浓度与季节存在一定的相关性,但与样品中的NO3-、SO42-浓度间无明显的相关性;样品中的多环芳烃主要来源于煤炭、木材及石油的不完全燃烧.  相似文献   

8.
研究了某地区农田表层土壤中16种PAHs污染状况和来源。结果表明,研究区2012和2016年土壤中PAHs总平均值分别为1 748和3 248 ng/g,其值显著高于其他文献研究区。指出,研究区土壤已受到PAHs的污染,土壤中PAHs以3环、4环为主,Bb F、Ba P、Phe、Ba A、Fla、Pyr、Chr、Flu等质量比相对较高,其污染源主要为焦化、煤和天然气的燃烧,此外交通源对多环芳烃污染也有一定的贡献。  相似文献   

9.
大气颗粒物中多环芳烃的索氏提取研究   总被引:14,自引:0,他引:14  
通过对大气颗粒物中多环芳烃的索氏提取过程中的不同阶段的提取液中多环芳烃的分析 ,绘制了索氏提取曲线 ,发现提取效率主要取决于提取循环次数 ,而与提取浸泡时间关系不大。通过比较 1 1种提取液对加标参考物和实验参考物的索氏提取效率 ,发现常用的环己烷、苯等提取液提取效率很低。提取能力的序列为喹啉 乙醇 >吡啶 乙醇 >丙酮>乙醇 >二氯甲烷 >苯 >环己烷 >石油醚 >丙酮 乙醇 环己烷 >氯仿 >四氢呋喃。  相似文献   

10.
大气颗粒物中多环芳烃的源解析方法   总被引:13,自引:0,他引:13       下载免费PDF全文
综述了用于大气颗粒物中多环芳烃(PAHs)源解析的主要定性、定量方法、并对其优缺点作了总结。比值法多用于定性解析,化学质量平衡法(CMB)要求源的成分谱较全面,而多元统计法则要求输入的数据较多。由于缺乏各污染源较完整的PAHs成分谱,且PAHs易发生化学反应,所以CMB法难以广泛推广,而多元统计法对源成分谱,且PAHs易发生化学反应,所以CMB法难以广泛推广,而多元统计不对源成分谱要求低,且不需要考虑PAHs的降解,因而具有推广价值。  相似文献   

11.
宁波和温州地区夏季大气中不同粒径颗粒物特征分析   总被引:1,自引:0,他引:1  
对宁波地区北仑和奉化站、温州地区乐清站3个监测点夏季TSP、PM10、PM2.5和PM1.0进行监测,测试分析各种粒径颗粒物浓度水平和粒径分布特征,并通过化学质量平衡(CMB)受体模型对颗粒物进行源解析。监测结果显示,夏季宁波、温州地区TSP和PM10日均浓度为0.049~0.134mg/m3和0.025~0.084mg/m3,均未超过我国环境空气质量二级标准;PM2.5日均浓度为0.007~0.069mg/m3,按美国2006年EPA最新标准限值0.035mg/m3衡量,奉化、乐清、北仑站的超标天数占总监测天数的比例分别为75%、40%和37.5%。粒径分布统计结果显示,3个监测站点PM10占TSP的比例为48.78%~86.96%;PM2.5占TSP的比例为33.33%~72.46%;奉化和乐清监测点PM10中PM2.5和PM1.0的比例平均值在50%以上。源解析结果显示,夏季TSP主要来源于土壤尘,其次是建筑尘和煤烟尘,其贡献率分别为40.70%~55.49%、9.62%~13.64%和5.85%~17.28%。  相似文献   

12.
灰霾天气不同粒径的颗粒物污染特征分析   总被引:2,自引:0,他引:2  
利用宁波市北仑区PM10、PM2.5和PM1的监测数据及与之对应的能见度监测结果,对影响灰霾天的颗粒物的污染特征进行了系统研究,结果表明,颗粒物粒径对灰霾天的形成和能见度的影响程度差异明显,且3种粒径的颗粒物质量浓度与能见度之间线性关系密切。  相似文献   

13.
宁波市PM10、PM2.5中水溶性无机阴离子浓度水平及分布特征   总被引:4,自引:5,他引:4  
研究了宁波市PM10、PM2.5中无机阴离子浓度水平及分布特征。结果表明,PM10中Cl-为1.00μg/m3,具有较明显的海洋特征,SO24-、NO3-离子浓度为9.90、3.70μg/m3;Cl-主要存在于粒径为2.5-10μm的颗粒物中,而NO3-、SO42-主要存在于PM2.5中,成为PM2.5的重要组成部分。PM10中水溶性无机阴离子季节变化明显,呈冬天高,夏天低的趋势。  相似文献   

14.
大气颗粒物源解析受体模型应用研究及发展现状   总被引:6,自引:2,他引:6  
通过大量文献资料调研对化学质量平衡模型、二重源解析技术、主因子分析、正矩阵因子分析法等目前应用较广泛的受体模型方法的原理、优缺点和应用现状进行了比较分析,对单颗粒源解析方法、有机物示踪技术和扩散与受体模型联用技术等受体模型新技术方法进行了评述。  相似文献   

15.
环境空气颗粒物来源解析受体样品化学组成的时空差异,除受采样点位分布制约外,主要还受采样时间的制约。如何选取时间段及采样周期显得尤为重要。通过青岛市空气自动监测系统近几年获取的颗粒物连续时均值数据,采用统计优化组合选择法,筛选出日均值、年均值的最佳采样时段,可供类似研究参考。  相似文献   

16.
机动车排放颗粒物成分谱对比研究   总被引:1,自引:0,他引:1  
对深圳、无锡、济南和美国EPA建立的机动车排放颗粒物成分谱进行对比研究,建立的成分谱中各组分含量存在较大差别原因为使用了不同的采样方法。  相似文献   

17.
通过2018年1月的污染天和非污染天在上海人民广场地铁站对装有屏蔽门系统的1号线站台和装有安全门系统的2号线站台上的颗粒物数量浓度进行监测并作对比研究,结果表明:污染天和非污染天,安装屏蔽门系统的站台颗粒物数量浓度相对于安全门系统分别降低2.08%~35.44%和5.69%~51.31%。屏蔽门站台的颗粒物浓度表现为后站台>前站台>中站台;安全门系统颗粒物浓度无规律。屏蔽门系统站台的颗粒物在人体内的沉积量要低于安全门系统,站台两端的颗粒物在人体内的沉积量高于站台中间。  相似文献   

18.
兰州城区大气粒子态汞的污染状况   总被引:8,自引:0,他引:8  
通过调查发现在市工业区,粒子态汞浓度高,冬,夏平均值为0.91和1.00ng/m^3,最高达1.92ng/m^3,冬夏季无显著性差异,秋季浓度低,交通频繁区和交通商业混合区冬季平均值0.45ng/m^3,夏季0.49ng/m^3在清洁区大部分在0.10ng/m^3左右,最低0.070ng/m^3,显示夏季和城区粒子态汞浓度偏高的特征。工业区粒子态汞主要是由人为污染产生的气态汞吸附在同一污染源的粒尘  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号