首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest biodiversity policies in multi-ownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range Physiographic Province of Oregon. This mountainous area of conifer and hardwood forests includes a mosaic of landowners with a wide range of goals, from wilderness protection to high-yield timber production. We projected forest changes over 100 years in response to logging and development using models that integrate land use change and forest stand and landscape processes. We then assessed responses to those management activities using GIS models of stand structure and composition, landscape structure, habitat models for focal terrestrial and aquatic species, timber production, employment, and willingness to pay for biodiversity protection. Many of the potential outcomes of recently enacted policies are consistent with intended goals. For example, we project the area of structurally diverse older conifer forest and habitat for late successional wildlife species to strongly increase. 'Other outcomes might not be consistent with current policies: for example, hardwoods and vegetation diversity strongly decline within and across owners. Some elements of biodiversity, including streams with high potential habitat for coho salmon (Oncorhynchus kisutch) and sites of potential oak woodland, occur predominately outside federal lands and thus were not affected by the strongest biodiversity policies. Except for federal lands, biodiversity policies were not generally characterized in sufficient detail to provide clear benchmarks against which to measure the progress or success. We conclude that land management institutions and policies are not well configured to deal effectively with ecological issues that span broad spatial and temporal scales and that alternative policies could be constructed that more effectively provide for a mix of forest values from this region.  相似文献   

2.
Protecting biodiversity has become a major goal in managing coastal forests in the Pacific Northwest--an area in which human activities have had a significant influence on landscape change. A complex pattern of public and private forest ownership, combined with new regulations for each owner group, raises questions about how well and how efficiently these policies achieve their biodiversity goals. To develop a deeper understanding of the aggregate effect of forest policies, we simulated forest structures, timber production, and socioeconomic conditions over time for the mixture of private and public lands in the 2.3-million-ha Coast Range Physiographic Province of Oregon. To make these projections, we recognized both vegetative complexity at the stand level and spatial complexity at the landscape level. We focused on the two major factors influencing landscape change in the forests of the Coast Range: (1) land use, especially development for houses and cities, and (2) forest management, especially clearcutting. Our simulations of current policy suggest major changes in land use on the margins of the Coast Range, a divergence in forest structure among the different owners, an increase in old-growth forests, and a continuing loss of the structural elements associated with diverse young forests. Our simulations also suggest that current harvest levels can be approximately maintained, with the harvest coming almost entirely from private lands. A policy alternative that retained live trees for wildlife would increase remnant structures but at a cost to landowners (5-7% reduction in timber production). Another alternative that precluded thinning of plantations on federal land would significantly reduce the area of very large diameter (>75 cm dbh) conifer forests 100 years into the future  相似文献   

3.
Seafloor habitats throughout the world's oceans are being homogenized by physical disturbance. Even though seafloor sediments are commonly considered to be simple and unstructured ecosystems, the negative impacts of habitat homogenization are widespread because resident organisms create much of their habitat's structure. We combine the insight gained from remote sensing of seafloor habitats with recently developed analytical techniques to estimate species richness and assess the potential for change with habitat homogenization. Using habitat-dependent species-area relationships we show that realistic scenarios of habitat homogenization predict biodiversity losses when biogenic habitats in soft sediments are homogenized. We develop a simple model that highlights the degree to which the reductions in the number of species and functional diversity are related to the distribution across habitats of habitat-specific and generalist species. Our results suggest that, by using habitat-dependent species-area relationships, we can better predict variation in biodiversity across seafloor landscapes and contribute to improved management and conservation.  相似文献   

4.
Conservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold-favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold-favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm-favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.  相似文献   

5.
Sperry JH  Weatherhead PJ 《Ecology》2008,89(10):2770-2776
Drought can have severe ecological effects and global climate-change theory predicts that droughts are likely to increase in frequency and severity. Therefore, it is important that we broaden our understanding of how drought affects not only individual species, but also multitrophic interactions. Here we document vegetation and small-mammal abundance and associated patterns of Texas ratsnake (Elaphe obsoleta) body condition and survival before, during, and after a drought in central Texas, USA. Vegetation (grass and forbs) height and small-mammal capture rates were two times greater in wet years compared to the drought year. The decline of small mammals (the snakes' principal prey) during the drought was associated with a drop in ratsnake body condition, consistent with reduced food intake. During the drought, snake mortality also increased 24%. Although higher snake mortality was attributable to predation and road mortality rather than being a direct result of starvation, an increase in risk-prone behavior by foraging snakes probably increased their exposure to those other mortality factors. Drought conditions lasted only for 21 months, and vegetation, small-mammal abundance, and snake condition had returned to pre-drought levels within a year. Although estimates of snake population size were not available, it is likely that substantially more than a year was required for the population to return to its previous size.  相似文献   

6.
The crisis in the early 1990s over conservation of biodiversity in the forests of the Pacific Northwest caused an upheaval in forest policies for public and private landowners. These events led to the development of the Coastal Landscape Assessment and Modeling Study (CLAMS) for the Coast Range Physiographic Province of Oregon, a province containing over two million hectares of forest with a complex mixture of public and private ownership. Over a decade, CLAMS scientists developed regional data bases and tools to enable assessments of the implications of current policies for biodiversity and have begun using these data and tools to test ideas for solving policy problems. We summarize here four main lessons from our work: (1) Regional ecosystem perspectives, while rewarding, are difficult to achieve. Helping policy makers and the public understand biodiversity policies for an entire province can assist in developing more reasoned policies. However, this result is difficult to achieve because needed scientific building blocks generally do not exist, few policy institutions address regional cross-ownership issues, people can find it difficult to take a regional view, and the appropriate region for analysis changes with the policy problem. (2) Interest in environmental policy analysis may come as much from a pursuit of power as a pursuit of understanding. Biodiversity policy analyses are often viewed as weapons in an ongoing political battle. Also, results that might destabilize existing policies generally will not be well received by those in power. (3) The relationship of regional analyses to civic processes remains challenging and unsettled. Communication between citizens and scientists takes real effort. Also, collaborative processes both inspire and constrain regional policy analysis, and scientific work often proceeds at a different pace than these processes. In the end, CLAMS's most important effect on the civic dialogue may be to change how people think about the Coast Range. (4) An important role exists for anticipatory assessments done independently by scientists. Independent review will be especially important as policy analyses shift to management of nonfederal forests. Our future efforts in CLAMS will focus on evaluating ideas for fundamental changes in forest management.  相似文献   

7.
Ecotourism is developing rapidly in biodiversity hotspots worldwide, but there is limited and mixed empirical evidence that ecotourism achieves positive biodiversity outcomes. We assessed whether ecotourism influenced forest loss rates and trajectories from 2000 to 2017 in Himalayan temperate forests. We compared forest loss in 15 ecotourism hubs with nonecotourism areas in 4 Himalayan countries. We used matching statistics to control for local-level determinants of forest loss, for example, population density, market access, and topography. None of the ecotourism hubs was free of forest loss, and we found limited evidence that forest-loss trajectories in ecotourism hubs were different from those in nonecotourism areas. In Nepal and Bhutan, differences in forest loss rates between ecotourism hubs and matched nonecotourism areas did not differ significantly, and the magnitude of the estimated effect was small. In India, where overall forest loss rates were the lowest of any country in our analysis, forest loss rates were higher in ecotourism hubs than in matched nonecotourism areas. In contrast, in China, where overall forest loss rates were highest, forest loss rates were lower in ecotourism hubs than where there was no ecotourism. Our results suggest that the success of ecotourism as a forest conservation strategy, as it is currently practiced in the Himalaya, is context dependent. In a region with high deforestation pressures, ecotourism may be a relatively environmentally friendly form of economic development relative to other development strategies. However, ecotourism may stimulate forest loss in regions where deforestation rates are low.  相似文献   

8.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   

9.
Combined archaeological and ecological investigations in a large ancient oak forest in Central France have revealed a dense network of ancient human settlements dating from the Roman period. We demonstrate a strong correlation between present-day forest plant diversity patterns and the location of Roman farm buildings. Plant species richness strongly increases toward the center of the settlements, and the frequency of neutrophilous and nitrogen-demanding species is higher. This pattern is paralleled by an increase in soil pH, available P, and delta(15)N, indicating the long-term impact of former agricultural practices on forest biogeochemical cycles. These extensive observations in a forested region on acid soils complement and confirm previous results from a single Roman settlement on limestone. Ancient Roman agricultural systems are increasingly being identified in contemporary French forests; the broad extent and long-lasting effects of previous cultivation shown in this study require that land-use history be considered as a primary control over biodiversity variations in many forest landscapes, even after millennia of abandonment.  相似文献   

10.
基于MODIS NDVI的广东省陆地生态系统净初级生产力估算   总被引:1,自引:0,他引:1  
以改进的CASA模型为基础,结合MODISNDVI数据、气象资料和土地利用资料,估算了广东省陆地生态系统2001-2007年逐月净初级生产,并分析了其时空动态.结果显示:2001-2007年期间,广东省每年NPP产量为C 138.8Tg·a-1;年际动态显示,2003年NPP最高,2005年NPP最低,总体略呈下降趋势;年内动态显示,NPP累积主要发生在5-10月;空间分布显示,广东省NPP高值区为粤北植被覆盖良好地区;珠江三角洲为全省NPP的低值区.要维持区域生态可持续性,需要重点加强珠江三角洲地区的生态环境建设.  相似文献   

11.
广东省森林资源动态变化及成因分析   总被引:5,自引:0,他引:5  
在1983年到2005年的林地基本数据的基础上,文章利用统计分析方法、单一土地利用类型动态度、土地利用变化区域差异模型分析方法结合GIS对广东省森林资源进行了分析,主要分析了森林资源的时间变化,包括数量的动态变化、变化速度以及区域变化差异,总结出广东省森林资源动态变化的几个特点:①林业用地1987年最少,有林地持续稳定增长,先由无林地和疏林地大面积减少转化为有林地,后来主要是非林业用地转化为林业用地.防护林面积有大幅度上升,薪炭林呈下降趋势.②幼龄林占绝对比重,近过成熟林比重低但在逐渐增加.活立木总蓄积持续上升,幼龄林、中龄林和近成过熟林蓄积基本随着面积变化而变化.③灌木林地和未成林造林地有相当幅度面积的增加.④1996-2004年,广州、深圳、珠海、东莞、中山、佛山林地相对变化率大多数在10以上,比平均变化大得多.文中对成因有简单的探讨,明确了广东省森林资源变化特点和规律,这将为广东省森林资源的可持续发展和决策部门提供依据.  相似文献   

12.
Recent conceptual advances address forest response to multiple disturbances within a brief time period, providing an ideal framework for examining the consequences of natural disturbances followed by anthropogenic management activities. The combination of two or more disturbances in a short period may produce "ecological surprises," and models predict a threshold of cumulative disturbance severity above which forest composition will be drastically altered and regeneration may be impaired. Salvage logging (the harvesting of timber after natural disturbances; also called "salvaging" or "sanitary logging") is common, but there have been no tests of the manner in which salvaging after natural wind disturbance affects woody plant regeneration. Here we present findings from three years after a moderate-severity wind disturbance in west-central Tennessee, USA. We compare two unsalvaged sites and two sites that had intermediate-intensity salvaging. Our approach demonstrates the calculation of cumulative severity measures, which combine natural windthrow severity and anthropogenic tree cutting and removal, on a plot-by-plot basis. Seedling/sapling density and species richness were not influenced by cumulative disturbance severity, but species diversity showed a marginal increase with increasing cumulative severity. The amount of compositional change (from predisturbance trees to post-disturbance seedlings/saplings) increased significantly with cumulative severity of disturbance but showed no evidence of thresholds within the severity range examined. Overall, few deleterious changes were evident in these sites. Moderate-severity natural disturbances followed by moderate-intensity salvaging may have little detrimental effect on forest regeneration and diversity in these systems; the ecological surprises and threshold compositional change are more likely after combinations of natural and anthropogenic disturbances that have a much greater cumulative severity.  相似文献   

13.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

14.
The degree to which spatial patterns influence the dynamics and distribution of populations is a central question in ecology. This question is even more pressing in the context of rapid habitat loss and fragmentation, which threaten global biodiversity. However, the relative influence of habitat loss and landscape fragmentation, the spatial patterning of remaining habitat, remains unclear. If landscape pattern affects population size, managers may be able to design landscapes that mitigate habitat loss. We present the results of a mensurative experiment designed to test four habitat loss vs. fragmentation hypotheses. Unlike previous studies, we measured landscape structure using quantitative, spatially explicit habitat distribution models previously developed for two species: Blackburnian Warbler (Dendroica fusca) and Ovenbird (Seiurus aurocapilla). We used a stratified sampling design that reduced the confounding of habitat amount and fragmentation variables. Occurrence and reoccurrence of both species were strongly influenced by characteristics at scales greater than the individual territory, indicating little support for the random-sample hypothesis. However, the type and spatial extent of landscape influence differed. Both occurrence and reoccurrence of Blackburnian Warblers were influenced by the amount of poor-quality matrix at 300- and 2000-m spatial extents. The occurrence and reoccurrence of Ovenbirds depended on a landscape pattern variable, patch size, but only in cases when patches were isolated. These results support the hypothesis that landscape pattern is important for some species only when the amount of suitable habitat is low. Although theoretical models have predicted such an interaction between landscape fragmentation and composition, to our knowledge this is the first study to report empirical evidence of such nonlinear fragmentation effects. Defining landscapes quantitatively from an organism-based perspective may increase power to detect fragmentation effects, particularly in forest mosaics where boundaries between patches and matrix are ambiguous. Our results indicate that manipulating landscape pattern may reduce negative impacts of habitat loss for Ovenbird, but not Blackburnian Warbler. We emphasize that most variance in the occurrence of both species was explained by local scale or landscape composition variables rather than variables reflecting landscape pattern.  相似文献   

15.
We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.  相似文献   

16.
Allen DC  Vaughn CC 《Ecology》2011,92(5):1013-1019
Several decades of research have shown that biodiversity affects ecosystem processes associated with resource capture and the production of biomass within trophic levels. Although there are good reasons to expect that biodiversity influences non-trophic ecosystem processes, such as the physical creation or modification of habitat, studies investigating the role of biodiversity on physical processes are scarce. Here we report the results of a study using artificial streams to test the influence of freshwater mussel biodiversity on gravel erosion during high flows while manipulating mussel abundance. Mussel species vary in traits that should influence their effects on erosion, such as size, shell morphology, and burrowing behavior. We found that mussel species richness was associated with an increase in erosion at both low and high densities. Planned contrasts showed that the erosion observed in species mixtures was purely additive at low density, indicating that erosion in a species polyculture could routinely be predicted by the performance of monocultures. However, at high density certain combinations of species showed nonadditive effects on erosion, suggesting that organism abundance can fundamentally alter biodiversity effects. Although this may have been a result of altered species interactions at high density, our study design cannot confirm this.  相似文献   

17.
Coastal swamps are among the rapidly vanishing wetland habitats in Louisiana. Increased flooding, nutrient and sediment deprivation, and salt-water intrusion have been implicated as probable causes of the decline of coastal swamps. We developed a two-species individual-based forest succession model to compare the growth and composition of a cypress-tupelo swamp under various combinations of flooding intensity and salinity levels, using historical time-series of stage and salinity data as inputs. Our model simulates forest succession over 500 years by representing the growth, mortality, and reproduction of individual Taxodium distichum (baldcypress) and Nyssa aquatica (water tupelo) trees in a 1-km2 spatial grid of 10 m × 10 m cells that vary in water levels and salinity through differences in elevation. We independently adjusted the elevations of each cell to obtain different grid-wide mean elevations and standard deviations of elevation; this affected the temporal and spatial pattern of flooding. We calibrated the model by adjusting selected parameters until averaged basal area, stem density and wood production rates under two different mean elevations (partially versus highly flooded) were qualitatively similar to comparable values reported for swamps in the literature. Corroboration involved comparing model predictions to four well-monitored contrasting habitat sites within the Maurepas Basin, Louisiana, USA. Model predictions of both species combined showed the same patterns among sites as the data, but the model overestimated wood production and the dominance of T. distichum. Exploratory simulations predicted that increased flooding leads to swamps with reduced basal areas and stem densities, while increased salinity resulted in lower basal areas at low salinity concentration (∼1-3 psu) and complete tree mortality at higher salinity concentrations (∼2-6 psu). Our model can provide insight into the succession dynamics of coastal swamps and information for the effective design of restoration actions.  相似文献   

18.
基于野外样方数据,按照林龄与垂直分布层次,分别采用Margalef丰富度指数(Dm)、Pielou均匀度指数(J)与生态优势度指数(C)计算式,对闽西北地区主要优势种为米槠(Castanopsis carlesii)、栲树(Castanopsis fargesii)、甜槠(Cadtanopsis eyrei)、青冈(Quercus glauca)等壳斗科植物为主的天然常绿阔叶混交林群落的物种多样性进行了调查与对比分析。结果表明:(1)不同龄组常绿阔叶混交林乔木层的物种多样性存在显著差异(P<0.05),以中龄林最为丰富,近熟林与成熟林次之,幼龄林最低,各龄组间的物种分布的均匀度与优势度差异不明显(P﹥0.05),近熟林J值最大,幼龄林C值最大;(2)不同龄组常绿阔叶混交林灌木层间的Dm、J、C值差异显著(P<0.05),以中龄林与成熟林内物种较为丰富,近熟林次之,幼龄林最低,物种分布以幼龄林内最为不均;(3)不同龄组常绿阔叶混交林草本层间的Dm、J、C差异显著(P<0.05),物种多样性以成熟林内最为丰富,幼龄林次之,近熟林内最低,成熟林与幼龄林内草本层物种分布较均匀,中龄林与近熟林内则分布较集中,其物种优势度较高;(4)不同龄组常绿阔叶混交林乔、灌、草层间的物种多样性不同。在幼龄林中,Dm值大小顺序为:乔木层>草本层>灌木层,J值为草本层>乔木层>灌木层。中龄林、近熟林、成熟林的Dm值大小顺序均为:乔木层>灌木层>草本层,J值为灌木层>乔木层>草本层。研究结果可为了解闽西北地区不同龄组常绿阔叶混交林群落结构的物种组成与动态变化特征,探讨常绿阔叶混交林近自然经营及其残次林改造技术,制定其生物多样性的生态保护决策等提供理论依据。  相似文献   

19.
基于辽宁省56个气象站的气象资料,利用Kira的温暖指数(WI)、寒冷指数(CI)和徐文铎的湿度指数(HI)分析辽宁省近40年(1967-2006年)气候-植被指标的时空变异。结果表明,就辽宁省区域平均值而言,WI指数呈升高趋势,每10年增加幅度为2.47℃·月,CI指数呈下降趋势,每10年下降幅度为2.31℃·月,HI总体呈下降趋势,波动较WI和CI明显,从气候—植被指数变化趋势看,对红松Pinus koraiensis Sieboldet Zuccarini、长白落叶松Larixolgensis等不利,而对油松Pinu stabulaeformis Carr、栓皮栎Quercus vari abilis Blume等树种有利。空间变化特征表现为,温暖指数界限呈向西北移动的趋势,表明暖温带落叶阔叶疏林带的适宜面积增加,而温带针阔叶混交林带的适宜面积减小;HI指数减小并且向东移,表明随着指数带的北移和东移缩小限制了原有针叶树种的生长,而对栎树Phytophthora ramorum等阔叶树种有利。  相似文献   

20.
Structured sampling designs are important in the assessment of environmental impacts of variable ecological systems. Recent developments have provided a useful framework extending existing univariate techniques into a multivariate context. Measures of taxonomic relatedness have also been introduced, which complement existing measures of diversity of assemblages. In this study, the potential effects of sewage discharge on spatial patterns of highly diverse molluscan assemblages in a Mediterranean rocky subtidal habitat were investigated. Nine 20 cm×20 cm quadrats were taken from each of three sites (80 m–100 m apart) within a putatively impacted location near a sewage outfall (I) and at each of two control locations (Cs) by destructive sampling by SCUBA divers at a depth of 3 m–4 m. A total of 5507 specimens of 151 species were collected. The average and the variance in total abundance of molluscs were greater, on average, at I than at Cs. Higher abundances at the sewage outfall were largely driven by greater numbers of juvenile molluscs. The Shannon diversity of molluscs (H′) was significantly lower at I, but no difference among locations was detected for the total number of species (S). In addition, the taxonomic distinctness (Δ*) of molluscs was greater at Cs, although it was more variable at I. Multivariate analyses showed that there was a significant difference in the structure of assemblages at I compared with Cs. The location near the outfall was characterized by greater abundances of several species, including especially the gastropods Pusillina philippi, Bittium latreilli, and Bittium reticulatum. There was also greater variability in the structure of assemblages among sites and among quadrats at control locations compared to those near the outfall. Using a suite of univariate and multivariate measures, including diversity indices, detailed information on taxonomic structure and analyses of variability at different spatial scales, provided useful insights into the effects of sewage impacts on these diverse assemblages. These results also highlighted the importance of analysing measures of variance, as well as mean in considering effects of stress in natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号