首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
考察了初始浓度、紫外光(UV)功率、超声波(US)频率和功率、催化剂TiO2加入量、溶液的pH值、H2O2的加入量等各种因素,对紫外光-超声波耦合降解邻硝基苯酚(ONP)水溶液效果的影响.实验结果表明,ONP的紫外光-超声波降解符合表观一级动力学.随着初始浓度的增加.ONP的降解速率和去除率均减小.紫外光-超声波耦合降解效果明显好于紫外光、超声波分别单独降解的效果,两者存在着协同效应,反应速率常数分别为:KUV/US=0.005 2 min-1、KUV=0.002 9 min-1、KUS=0.002 2 min-1.提高紫外光功率、超声波的频率和功率可促进ONP的降解.当紫外光功率为150 W,超声波频率为165 kHz、功率为100 W时.ONP的降解效果达到最佳,240 min的去除率达到72.41%.催化剂TiO2的加入促进ONP降解.本实验中优化投加量为0.15g/L,ONP的去除率达到90.43%.在催化剂存在的情况下,溶液pH值的降低可提高降解速率;H2O2的投加则显著提高了ONP的去除率.  相似文献   

2.
采用纳米Ni/Fe双金属对直接耐酸大红4BS(DFS-4BS)染料进行去除研究.考察了不同反应参数对DFS-4BS去除效果的影响.结果表明,在pH值5.0,30 ℃,DFS-4BS质量浓度100 mg/L,纳米Ni/Fe质量浓度8 g/L和反应4 h的优化条件下,DFS-4BS的去除率达89.5%. 动力学研究表明,纳米Ni/Fe对DFS-4BS的降解符合伪一级反应动力学方程,表观速率常数Kobs为6.3×10-3 min-1,半衰期为110.02 min.纳米Ni/Fe对实际废水中的DFS-4BS去除率为71.2%.  相似文献   

3.
通过烧杯试验研究水处理常用氧化剂KMnO_4氧化水中甲硫醚的效能,探讨了KMnO_4投加量、甲硫醚初始质量浓度、p H值及腐殖酸质量浓度对氧化反应的影响,并对反应动力学及氧化产物进行了分析。结果表明:不同剂量的KMnO_4氧化甲硫醚反应在t=10 min内已基本完成,去除率达99%;随KMnO_4投加量增加,去除率和反应速率增加;KMnO_4过量条件下甲硫醚初始质量浓度对反应速率和去除率无影响;p H值对反应速率常数影响较显著,当p H=6.85时,反应速率常数达到最大;0~30 mg/L的腐殖酸对甲硫醚去除率基本无影响,但对反应速率有一定的抑制作用。腐殖酸质量浓度在0~15 mg/L变化时,反应速率常数基本不变;腐殖酸质量浓度从15 mg/L增大到20mg/L时,反应速率常数迅速变小,反应进程变慢;而当腐殖酸质量浓度大于等于20 mg/L时,反应速率常数又基本不变。KMnO_4氧化甲硫醚的反应符合二级反应动力学模型,二级反应的动力学常数k=0.647 L/(min·mg)。通过GC/MS对反应产物分析发现,KMnO_4可将甲硫醚氧化为二甲基亚砜。因此,KMnO_4是一种高效、快速的去除水中甲硫醚的氧化剂。  相似文献   

4.
空化水射流-双氧水联合降解苯酚反应动力学   总被引:1,自引:0,他引:1  
空化水射流-双氧水协同降解酚类污染物在废水处理领域有很广泛的应用前景,但动力学方面的研究较少.为此,研究了空化水射流-双氧水联合降解苯酚的反应动力学.结果表明:当苯酚初始质量浓度为100 mg/L、溶液pH值为3.0、双氧水质量浓度为300 mg/L时,苯酚在空化水射流、双氧水和空化水射流-双氧水3种方法处理下,去除率分别为17%、21%、99.8%,且3种反应均符合表观一级反应动力学,表观反应速率常数分别为2.05×10-5 s-1、2.48×10-5 s-1、174.1×10-5 s-1,空化水射流与双氧水的协同效应使表观速率常数提高了38.4倍,表明空化水射流和双氧水联合处理工艺具有良好的协同效应;建立并求解了空化水射流-双氧水协同降解苯酚的动力学模型,得出了苯酚降解的反应动力学方程,经验证相关系数在0.98以上.  相似文献   

5.
以超声波(US)和Fenton试剂联用对氯苯(CB)的脱氯降解作用进行了研究.采用单因素法,重点考察了Fenton试剂配比(n(H_2O_2):n(Fe~(2+)))、Fenton试剂用量、CB初始浓度、溶液初始pH值和超声波功率等因素对脱氯降解效果的影响,研究了CB浓度与反应时间的变化关系.结果表明,US/Fenton试剂对CB具有良好的脱氯降解作用,当CB初始质量浓度为100 mg·L~(-1)、H_2O_2与Fe~(2+) 的物质的量比为40:1、H_2O_2的浓度为10 mmol·L~(-1)、溶液初始pH值为3、超声波功率为250 W时,CB脱氯率最大可达93.5%.US/Fenton试剂对于CB的脱氯降解反应符合1级衰减模型,速率常数k'=0.266 min~(-1).  相似文献   

6.
Fenton试剂预处理高浓度丁腈胶乳生产废水   总被引:1,自引:1,他引:0  
采用Fenton试剂预处理高浓度丁腈胶乳生产废水,确定最佳操作条件为:[H2O2]= 2 664 mg/L,[Fe2 ]=219 mg/L,初始pH=5.0,25 ℃下反应60 min,此条件下废水COD去除率可达80%以上.经正交试验得出各因素对废水COD去除率的影响顺序为:pH>[H2O2]>[Fe2 ]>反应时间.动力学研究表明,在此最佳操作条件下,反应近似符合一级反应动力学,动力学方程ln(C0/C)=0.018 7t 0.783 1,反应速率常数k=0.018 7 min-1,半衰期t 1/2=37.1 min.  相似文献   

7.
水质对UV/H2O2降解邻苯二甲酸二甲酯反应动力学的影响   总被引:2,自引:0,他引:2  
研究了不同初始pH值、浊度与常见阴离子浓度等水质条件对UV/H2O2工艺降解邻苯二甲酸二甲酯(DMP)反应速率的影响,并进一步比较了去离子水和自来水中DMP的降解速率.结果表明,UV/H2O2对DMP的光降解过程符合一级反应动力学模型,不同水质条件对降解速率有不同程度的影响.酸性条件较碱性条件更有利于DMP降解; 水的浊度大于7 NTU时,光降解速率常数迅速下降; NO3-、Cl3-、HCO3-等阴离子对DMP降解有抑制作用,且随离子浓度增大,抑制作用增强,3种离子对DMP光降解的抑制程度顺序为HCO3->NO3->Cl3-.在5个30 W低压汞灯照射下,当H2O2的浓度为20 mg·L-1时,DMP在去离子水和自来水中光降解速率常数分别为0.042 8 min-1和0.031 5 min-1,自来水中的光降解速率常数较去离子水中的低,这可能是水中多种离子影响的结果.  相似文献   

8.
采用铋酸钠为催化剂,在可见光条件下光催化氧化处理苯胺,分别采用单因子试验和正交因子试验研究了苯胺初始浓度、苯胺废水初始pH值、催化剂投加量对氧化效果的影响,分析了光催化动力学模型和动力学速率方程。结果表明,铋酸钠光催化氧化能够快速降解水中的苯胺,试验中各条件下苯胺的降解率2h后最低也可达到60%以上,一些条件下甚至可达95%以上;正交试验表明最佳运行条件为pH=5,催化剂投加量为1 g/L,苯胺初始质量浓度为20 mg/L;铋酸钠光催化氧化苯胺符合Langmuir-Hinshelwood一级动力学模型及其动力学速率方程;苯胺初始质量浓度从20 mg/L增加到60 mg/L时,反应速率从0.040 2min-1降至0.022 2 min-1。  相似文献   

9.
以活性炭为载体,采用溶胶凝胶法制备负载型的催化剂(TiO2/GAC),进行了有无紫外光降解和有无活性炭条件下的微囊藻毒素- LR( MCLR)降解试验.结果显示,在紫外光照射下,MCLR不会自身降解,且紫外光照对活性炭吸附性能无明显影响.此外,通过负载型催化剂对不同初始质量浓度的MCLR溶液的吸附和光催化降解试验,进行了Lagergreen准二级模型和颗粒内部扩散模型拟合催化剂的吸附去除动力学研究,应用Langmuir- Hinshelwood和Freundlich-Hinshelwood模型拟合光催化降解过程.结果表明,Lagergren准二级模型和Langmuir- Hinshdwood模型均能较好地描述TiO2/GAC对MCLR的吸附、光降解过程,Langmuir-H inshelwood模型中吸附平衡常数Kt值基本保持不变,约(0.057 0±0.0008)L/μg,降解速率常数k值随着初始质量浓度的增加有所下降.  相似文献   

10.
超声波对微电解处理硝基苯的协同效应研究   总被引:2,自引:0,他引:2  
以硝基苯为目标污染物,考察超声波对微电解技术的协同效应.结果表明,无机械搅拌条件下,硝基苯溶液初始质量浓度为50 mg·L~(-1)、超声波功率密度为200 W·L~(-1)、溶液初始pH值为3.0时,超声波/微电解协同体系降解效果显著高于超声波与微电解单独作用之和,降解过程超声波和微电解间存在显著协同效应,比较3者的降解速率常数可知超声波与微电解间的协同因子达4.875.研究表明,超声波能有效防止铁屑表面钝化和板结现象,超声波促进微电解体系中·OH生成是超声波对微电解降解硝基苯产生明显协同效应的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号