首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
西安市城市主干道路面径流污染负荷研究   总被引:2,自引:0,他引:2  
在西安市城市主干道南二环路建立路面径流原位采样站,利用自制流量等比例采样装置,对2009年3-11月的34场降雨径流进行径流过程连续采样,测试各场次径流SS、COD、NH4+-N、Pb和Zn的事件平均质量浓度(EMC),计算径流次污染负荷,并在分析次污染负荷影响因素的基础上,采用多元回归方法建立径流次污染负荷数学模型.结果表明,西安市城市主干道路面径流SS、COD、NH4+-N、Pb和Zn的次污染负荷分别为4.56~778.39 kg/hm2、2.22~308.7 kg/hm2、0.01 ~ 1.39 kg/hm2、0.05 ~ 33.09 g/hm2和1.38~115.82 g/hm2,不同场次径流事件携带入受纳水体的污染物量差异大,对受纳水体造成冲击影响.表征降雨特征的各因子中,降雨量与路面径流次污染负荷呈显著正相关,在显著性水平0.01时相关系数为0.734~ 0.943,最大降雨强度和降雨历时也与次污染负荷显著正相关,而前期晴天时间与次污染负荷不相关.所建立的径流污染负荷模型一致通过拟合优度检验和方程显著性检验,可用于对路面径流次污染负荷的预测.  相似文献   

2.
分析地板送风系统停机后影响室内可吸入颗粒物浓度变化的因素,建立颗粒物浓度的沉降模型并求出分析解,得出颗粒物浓度随时间的变化规律.通过颗粒物浓度的沉降模型计算颗粒物的沉降损失率和沉降速度.结果表明,当室内颗粒物的粒径大于1 μm时,其沉降损失率与粒径呈线性正相关; 粒径小于1 μm时,其沉降损失率和衰减率低于前者,但沉降稳定后的颗粒物浓度远大于前者.研究进一步证明了大粒径颗粒物的沉降主要由重力决定而小粒径的由布朗扩散力决定.  相似文献   

3.
为分析叶面微结构对滞留颗粒物粒径的影响,以分布较广的常绿植物——大叶女贞为研究对象,用激光粒度分析仪(湿法)测定叶面尘的粒径分布,用扫描电子显微镜和原子力显微镜观察叶面微结构;并用图像处理软件(图像法)分析叶面颗粒物的粒径特征,探讨不同测定方法对叶面颗粒物粒径分布的可能影响.结果表明,大叶女贞叶面滞留颗粒物粒径呈双峰分布,湿法测定的颗粒物粒径范围为0.4~ 52.6μm,粒径峰值为18.9 μm、36.2 μm,粒径均值为8.8 μm;图像法测定的颗粒物粒径范围为0.4~27.8 μm,粒径峰值为17.5μm、27.8μm,粒径均值为7.2μm.叶表面分布有大量的突起和凹陷,凹陷直径介于0.6~ 30 μm,直径小于2.5μm和10 μm的凹陷约占到总量的50%和80%.可吸入颗粒物(PM10)和细颗粒物(PM2.5)主要滞留在叶表的凹陷结构中,有少量粒径大于10 μm的颗粒物滞留在突起之上.PM2.5和PM10的体积分数仅占滞尘总量的17.9%和50.4%(湿法)、16.8%和45.9%(图像法),但数量多于大粒径颗粒物,这与小粒径的颗粒在个数上占优势、但大粒径的颗粒则对叶面滞留颗粒物的质量(或体积)贡献较大有关.叶背面颗粒物附着密度较正面小,PM2.5等颗粒物多分布在气孔周围,有少量颗粒物沉积在气孔上,从而堵塞气孔.  相似文献   

4.
模拟装置研究绿地系统在暴雨径流污染控制中的作用   总被引:1,自引:0,他引:1  
采用城市绿地和降雨系统模拟装置,研究绿地系统对实际暴雨径流污染的削减作用.历时60 min,降雨重现期为1 a、3 a、5 a时,绿地系统可以削减雨水径流量.1 a一遇时,绿地系统对雨水径流中COD、氮和磷总量的去除率分别为60.2%,49.2%和61.5%.以无植被裸土为对照,模拟绿地系统对径流雨水中COD、NH+4N及TP去除率较对照组分别提高7.1%,6.2%和4.4%.降雨期间污染物的去除主要依靠土壤和植物根系的截留、吸附和吸收作用;降雨后微生物开始降解吸附于土壤颗粒表面和植物根系上的污染物,降雨后第5~8 d,土壤中微生物数量达到最大值,第14~17 d微生物完成对吸附有机物等的降解,数量恢复到降雨前水平.研究表明, 模拟绿地对降雨地表径流量的削减、径流污染物浓度的削减和污染物总量的控制有较好作用.  相似文献   

5.
为探究铀矿井下常用的2种口罩对气溶胶粒子的过滤特性,在我国南方某铀矿山,利用APS3321型空气动力学粒径谱仪对井下工作人员常用纱布口罩和KN95型口罩的过滤特性进行了研究.井下气溶胶监测数据显示,该铀矿井下典型作业场所PM10的质量浓度介于0.069~ 9.800 mg/m3,个数浓度介于173.918 ~2 561.600个/cm3;PM2.5的质量浓度介于0.039~0.479 mg/m3之间,个数浓度介于173.100~2 556.382个/cm3之间.口罩过滤特性试验结果表明:1)KN95型口罩和纱布口罩对PM10的平均过滤效率分别为95%和76%,对PM2.5的平均过滤效率分别为93%和61%,可见KN95型口罩过滤效率明显高于纱布口罩;2)在0.5~3.5 μm粒径范围内,2种口罩对颗粒物的过滤效率均随粒径增大而增大,在3.5~ 10μm粒径范围内,2种口罩对不同粒径颗粒物的过滤效率均接近100%;3)无论从质量浓度还是个数浓度来看,经口罩过滤后的气溶胶粒子大多数分布在2.5μm粒径范围内,表明PM2.5是主要的气溶胶污染物.  相似文献   

6.
UASB反应器中温启动研究   总被引:5,自引:0,他引:5  
对UASB反应器中温启动进行了研究,结果表明:在水浴加热(35 ℃)时,采用未经驯化的城市生活污水厂消化池的剩余污泥接种,通过控制适当的pH值(6.8~7.2)、碱度(>1 000 mg/L),可以在65 d的时间里完成UASB反应器内污泥颗粒化启动,粒径1~3 mm.CODcr的去除率高达92.8%,其容积负荷达到12.8 kgCOD/(m3·d),沼气产量高达每去除1 kg COD产气0.8 m3.  相似文献   

7.
人工降雨对植物颗粒物的冲刷过程研究   总被引:2,自引:0,他引:2  
为研究降雨过程对植物颗粒物冲刷的动态变化,选择侧柏、冬青卫矛和小叶黄杨3种常绿树种,控制降雨强度为28.4 mm/h、69.0mm/h和102.4 mm/h,通过6次历时为30 min的人工降雨试验,比较叶面颗粒物的冲刷率和穿透雨中颗粒物浓度变化,并分析其影响因素。结果表明,1)树种间的叶面TSP(总悬浮颗粒物)冲刷率没有显著差异,其均值为35.57%±17.63%。但树种间细颗粒物、粗颗粒物和大颗粒物的冲刷率均差异显著,其值分别为15.4%、21.2%和39.1%,且粒径越大的颗粒物越容易被冲刷掉。2)颗粒物的冲刷率受降雨条件影响,即随降雨强度和降水量增大,颗粒物冲刷率增加,暴雨强度下总颗粒物冲刷率最大为51.4%。3)颗粒物质量浓度受降雨历时和累积降雨量影响,降雨历时越长,降雨量越大,穿透雨中颗粒物质量浓度越低。一般细颗粒物和粗颗粒物质量浓度在10 min时达到滞缓阶段,此时颗粒物质量浓度分别比1 min时降低了73.6%和62.0%,但暴雨能够缩短其初始滞缓时间至5 min,并提高降水对颗粒物的冲刷效率。  相似文献   

8.
在(35±1)℃条件下,采用高效厌氧反应器对青岛啤酒股份有限公司的生产废水进行处理,研究了厌氧反应器的启动和运行情况,分析了回流比、温度和上升流速等因素对反应器的影响.结果表明,厌氧反应器的容积负荷可达21 kg COD/(m3·d),COD去除率稳定在80%以上,出水挥发酸质量浓度低于350 mg/L,平均每去除1 kgCOD产生0.26 m3沼气.启动结束后,颗粒污泥的平均沉降速度由40.3 m/h提高到73.4 m/h,污泥密度由0.78 g/cm3升高至1.02 g/cm3,0.5~1.5 mm粒径的颗粒污泥占66%.同时,在25℃的运行条件下反应器的容积负荷降至9 kg COD/( m3·d),温度升高后反应器的运行可以较快得到恢复.  相似文献   

9.
以黄单胞菌为硫氧化菌种挂膜于生物滴滤塔,研究其去除能力及产物.通过测定压降、生物量确定挂膜时间,以进出气口浓度变化反映去除效率,测定营养液pH值变化,用SEM电镜扫描、能谱分析、X射线衍射对产物进行分析.结果表明,黄单胞菌挂膜时间为4 d,持续运行,菌种均匀地分布于填料表面;保持气体流量为1 L/min,H_2S气体质量浓度在2 000 mg/m~3以下时,去除率大于90.5%,单位体积最大生化去除量为43.23 g/(m~3·h);以10 d为周期添加营养,系统的pH值在5~7;自然沉降得到的黄色颗粒状沉淀粒径为3.161~31.90 μm;能谱分析表面主要成分为C、O、S,应该为微生物和S系物;X射线衍射分析表明干燥粉末的主要无机物质存在形态为S单质.塔在弱酸环境运行,能减少对装置的腐蚀,营养液中通过物理沉降、过滤、低速离心的简单手段,就能回收产物S单质.  相似文献   

10.
2006年4-7月,通过在广州市两条交通主干线上设点监测、采样分析,对城市路面径流COD污染特征进行分析.结果表明,市区和郊区路面径流COD浓度均超过<污水综合排放标准>规定的二级排放阈值;城市不同地区的COD负荷有较人差异,市区路面径流COD浓度高丁郊区,COD污染物质积累速度高于郊区;雨前干燥期是路面COD物质积累的重要影响因子;路面径流中COD浓度随降雨-径流过程呈现规律性变化,且径流COD与SS浓度具有显著相关关系;城市路面径流COD存在初期冲刷现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号