首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
ABSTRACT: Over 76,000 dams have been constructed on American rivers to provide services such as flood protection, water storage, hydroelectric power, and navigation. Although most dams continue to provide sufficient benefits to retain the structure, dam removal is becoming increasingly common. This study involved the construction of a dam removal database to analyze spatial and temporal trends in dam removal. The data included information on 417 cases of dismantled American dams, 153 with known rationales for removal. Database analysis indicated that the leading purposes for dismantling structures are safety concerns and interest in environmental restoration. There is substantial geographic variability in dam removal rationales, with California leading in razing dams for environmental purposes, and Wisconsin leading in economic and safety rationales. States with substantial removals tend to have programs that support and fund dam razing. Although removals for safety reasons have been increasing steadily in the past three decades, environmental removals made a rather dramatic and sudden entry into the dam removal arena in the 1990s. Analysis of spatial and temporal trends in dam razing are of particular significance given the likely increase in dam removals in the 21st Century.  相似文献   

2.
/ There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders  相似文献   

3.
ABSTRACT: There is a pressing need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sediment will be deposited downstream and how it will impact downstream channel morphology. In the absence of adequate empirical data, a good initial approach is to examine the impacts of dam removal within the context of the geomorphic analogies of channel evolution models and sediment waves. Channel changes at two dam breaching sites in Wisconsin involved a succession of channel forms and processes consistent with an existing channel evolution model. Sediment transported downstream after removal of other dams suggests that reservoir sediment may be translated downstream either as a distinct wave or gradually eroded away. More extensive data collection on existing dam removals is warranted before undertaking the removal of a large number of dams. However, if removal is to proceed based on current knowledge, then geomorphic analogies can be used as the foundation for sediment management and stabilization schemes.  相似文献   

4.
Kibler, Kelly, Desiree Tullos, and Mathias Kondolf, 2011. Evolving Expectations of Dam Removal Outcomes: Downstream Geomorphic Effects Following Removal of a Small, Gravel‐Filled Dam. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2011.00523.x Abstract: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams that no longer fulfill their intended function. As the decommissioning of small dams becomes increasingly commonplace in the future, it is essential that decisions regarding how and when to remove these structures are informed by appropriate conceptual ideas outlining potential outcomes. To refine predictions, it is necessary to utilize information from ongoing dam removal monitoring to evolve predictive tools, including conceptual models. Following removal of the Brownsville Dam from the Calapooia River, Oregon, aquatic habitats directly below the dam became more heterogeneous over the short term, whereas changes further downstream were virtually undetectable. One year after dam removal, substrates of bars and riffles within 400 m downstream of the dam coarsened and a dominance of gravel and cobble sediments replaced previously hardpan substrate. New bars formed and existing bars grew such that bar area and volume increased substantially, and a pool‐riffle structure formed where plane‐bed glide formations had previously dominated. As the Brownsville Dam stored coarse rather than fine sediments, outcomes following removal differ from results of many prior dam removal studies. Therefore, we propose a refined conceptual model describing downstream geomorphic processes following small dam removal when upstream fill is dominated by coarse sediments.  相似文献   

5.
Earthen embankment dams comprise 85% of all major operational dams in the United States. Assessment of peak flow rates for these earthen dams and the impacts on dam failure are of high interest to engineers and planners. Regression analysis is a frequently used risk assessment approach for earthen dams. In this paper, we present a decision support tool for assessing the applicability of nine regression equations commonly used by practitioners. Using data from 108 case studies, six parameters were observed to be significant factors predicting for peak flow as a metric for risk analysis. We present our work on an expanded earthen dam break database that relates the regression equations and underlying data. A web application, regression selection tool, is also presented to assess the appropriateness of a given model for a given test point. This graphical display allows users to visualize how their data point compares with the data used for the regression equation. These contributions improve estimates and better inform decision makers regarding operational and safety decisions.  相似文献   

6.
ABSTRACT: The fact that dams have failed indicates that there is still a risk involved, in spite of the major effort to ensure reliability. In seeking ways to reduce the risk, all aspects of the design, construction, monitoring, inspection, and rehabilitation of earth dams should be examined. Because dam classification is a central element, ways of minimizing uncertainty associated with classification need to be considered. A Bayesian approach to classification has numerous advantages over existing methods of earth dam classification because it directly evaluates the effects of uncertainties. A framework for incorporating Bayesian decision theory into the classification process is presented.  相似文献   

7.
ABSTRACT: Understanding the effects of dams on the inundation regime of natural floodplain communities is critical for effective decision making on dam management or dam removal. To test the implications of hydrologic alteration by dams for floodplain natural communities, we conducted a combined field and modeling study along two reaches in the Connecticut River Rapids Macrosite (CRRM), one of the last remaining flowing water sections of the Upper Connecticut River. We surveyed multiple channel cross sections at both locations and concurrently identified and surveyed the elevations of important natural communities, native species of concern, and nonnative invasive species. Using a hydrologic model, HEC‐RAS, we routed estimated pre‐and post‐impoundment discharges of different design recurrence intervals (two year through 100 year floods) through each reach to establish corresponding reductions in elevation and effective wetted perimeter following post‐dam discharge reductions. By comparing (1) the frequency and duration of flooding of these surfaces before and after impoundment and (2) the total area flooded at different recurrence intervals, our goal was to derive a spatially explicit assessment of hydrologic alteration, directly relevant to natural floodplain communities. Post‐impoundment hydrologic alteration profoundly affected the subsequent inundation regime, and this impact was particularly true of higher floodplain terraces. These riparian communities, which were flooded, on average, every 20 to 100 years pre‐impoundment, were predicted to flood at 100 ? 100 year intervals, essentially isolating them completely from riverine influence. At the pre‐dam five to ten year floodplain elevations, we observed smaller differences in predicted flood frequency but substantial differences in the total area flooded and in the average flood duration. For floodplain forests in the Upper Connecticut River, this alteration by impoundment suggests that even if other stresses facing these communities (human development, invasive exotics) were alleviated, this may not be sufficient to restore intact natural communities. More generally, our approach provides a way to combine site specific variables with long term gage records in assessing the restorative potential of dam removal.  相似文献   

8.
Dam removal has emerged as a critical issue in environmental management. Agencies responsible for dams face a drastic increase in the number of potential dam removals in the near future. Given limited resources, these agencies need to develop ways to decide which dams should be removed and in what order. The underlying science of dam removal is relatively undeveloped and most agencies faced with dam removal lack a coherent purpose for removing dams. These shortcomings can be overcome by the implementation of two policies by agencies faced with dam removal: (1) the development and adoption of a prioritization scheme for what constitutes an important dam removal, and (2) the establishment of minimum levels of analysis prior to decision-making about a dam removal. Federal and state agencies and the scientific community must encourage an initial experimental phase of dam removal during which only a few dams are removed, and these are studied intensively. This will allow for the development of the fundamental scientific understanding needed to support effective decision-making in the future and minimize the risk of disasters arising from poorly thought out dam removal decisions.  相似文献   

9.
Although the benefits of dam construction are numerous, particularly in the context of climate change and growing global demand for electricity, recent experience has shown that many dams have serious negative environmental, human, and political consequences. Despite an extensive literature documenting the benefits and costs of dams from a single disciplinary perspective, few studies have simultaneously evaluated the distribution of biophysical, socio-economic, and geopolitical implications of dams. To meet the simultaneous demands for water, energy, and environmental protection well into the future, a broader view of dams is needed. We thus propose a new tool for evaluating the relative costs and benefits of dam construction based on multi-objective planning techniques. The Integrative Dam Assessment Modeling (IDAM) tool is designed to integrate biophysical, socio-economic, and geopolitical perspectives into a single cost/benefit analysis of dam construction. Each of 27 different impacts of dam construction is evaluated both objectively (e.g., flood protection, as measured by RYI years) and subjectively (i.e., the valuation of said flood protection) by a team of decision-makers. By providing a visual representation of the various costs and benefits associated with two or more dams, the IDAM tool allows decision-makers to evaluate alternatives and to articulate priorities associated with a dam project, making the decision process about dams more informed and more transparent. For all of these reasons, we believe that the IDAM tool represents an important evolutionary step in dam evaluation.  相似文献   

10.
One uncertainty associated with large dam removal is the level of downstream sediment deposition and associated short‐term biological effects, particularly on salmonid spawning habitat. Recent studies report downstream sediment deposition following dam removal is influenced by proximity to the source and river transport capacity. The impacts of dam removal sediment releases are difficult to generalize due to the relatively small number of dam removals completed, the variation in release strategies, and the physical nature of systems. Changes to sediment deposition and associated streambed composition in the Elwha River, Washington State, were monitored prior to (2010‐2011) and during (2012‐2014) the simultaneous removal of two large dams (32 and 64 m). Changes in the surface layer substrate composition during dam removal varied by year and channel type. Riffles in floodplain channels downstream of the dams fined and remained sand dominated throughout the study period, and exceeded levels known to be detrimental to incubating salmonids. Mainstem riffles tended to fine to gravel, but appear to be trending toward cobble after the majority of the sediment was released and transported through system. Thus, salmonid spawning habitats in the mainstem appear to have been minimally impacted while those in floodplain channels appear to have been severely impacted during dam removal.  相似文献   

11.
ABSTRACT: To facilitate decisions regarding the need for modification of potentially unsafe dams, the U.S. Bureau of Reclamation developed procedures for assessing the threat to human lives posed by the failure of individual dams. The procedures provide a conceptual model of the variables influencing the loss of life from dam failure and a method for predicting loss of life based on the size of the population at risk from failure and the amount of warning time available for that population. The prediction equations are based on an analysis of 24 dam failures and major flash floods occurring since 1950. Adjustments to the predictions to reflect special local conditions are also discussed.  相似文献   

12.
ABSTRACT: The probable maximum flood (PMF) currently serves as the design standard for many U.S. dams. Floods used for design have increased and currently thousands of dams in the U.S. would be overtopped and possibly fail using the latest calculated PMF at each dam site. Some researchers have suggested that modifying dams to accommodate the PMF could be wasteful. Objections to using the PMF for dam modification include: (1) larger spillway capacity may increase annual downstream flood losses, (2) benefit‐cost ratios may be low, (3) construction accidents associated with dam modification may cause fatalities, and (4) the dollar amount spent to save lives by making dams safer is often very high. Based on these objections, a procedure is presented for evaluating the effectiveness of a proposed dam modification. A change in spillway design policy is recommended. Accepting the status quo at a dam that cannot accommodate the PMF may be the best course of action.  相似文献   

13.
Abstract: This study used an innovative GIS/remote sensing approach to study historical river channel changes in the Huron River, a wandering gravel‐bedded river in northern Ohio. Eight sets of historical aerial photographs (1958‐2003) span the construction of a low‐head dam (1969), removal of the spillway (1994), and removal of the dam itself (2002). Construction of the dam modified stream gradients >4 km upstream of the small impounded reservoir. This study tracked changes in the polygon size, shape, and centroid position of 12 sand‐gravel bars through a study reach 0.2‐4.1 km upstream of the dam. These bars were highly responsive, tending to migrate obliquely downstream and toward the outer bank at rates up to 9 m/year. Historical changes in the size and position of the bars can be interpreted as the downstream translation of one or more sediment waves. Prior to dam construction, a sediment wave moved downstream through the study reach. Following construction of the dam, this sediment wave became stationary and degraded in situ by dispersion. The growth of bars throughout the study reach during this time interval resulted in a progressive increase in channel sinuosity. Removal of the spillway rejuvenated downstream translation of a sediment wave through the study reach and was followed by a reduction in channel sinuosity. These results illustrate that important geomorphologic changes can occur upstream of low‐head dams. This may be a neglected area of research about the effects of dams and dam removals.  相似文献   

14.
Abstract: This paper presents the results of an ex post survey of recreational anglers for the lower Kennebec River, post‐Edwards Dam removal. To the best of our knowledge, this study represents one of the first ex post analyses of fisheries restoration from dam removal. We find significant benefits have accrued to anglers using the restored fishery. Specifically, anglers are spending more to visit the fishery, a direct indication of the increased value anglers place on the improved fishery. Anglers are also willing to pay for increased angling opportunities on the river. These findings have policy implications for other privately owned dams that are currently undergoing relicensing and/or dam removal considerations. Our findings may also hold implications for fisheries that have deteriorated due to historic dam construction.  相似文献   

15.
Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether these concerns are warranted at a particular site. We used a dam‐removal science database supplemented with other information sources to explore seven frequently raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are the following: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by nonnative plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors such as natural watershed variability and disturbance history.  相似文献   

16.
The World Commission on Dams (WCD) has now presented its final report on the problems with large dams. Many dam projects were found to be underperforming, especially those built for irrigation purposes. WCD also reports that many projects fail to meet current standards of social equity. A reallocation of costs and benefits is needed, but entrenched interests make this a difficult task. This article identifies shortcomings in large Asian irrigation projects: why the problems emerged, and what could be done to improve the performance of existing projects. The article argues that Asian irrigation agencies take mainly an engineering perspective, focusing on the dam itself. In a large number of cases, it takes over 10 years for the infrastructure to be installed and for the water to be delivered to the fields of the command area. Agencies need to improve their competence in dealing with social and environmental issues. This article argues that social and economic infrastructure is often inadequate; there is a need for an integrated view of the role of agriculture in development. Furthermore, adaptive management practices and water user participation can often be critical elements. To be successful, participation needs to be gender sensitive, and stakeholders at all income levels need to be consulted. To bridge the gulf between rhetoric and action, there is also a need for independent evaluation of dam projects.  相似文献   

17.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

18.
ABSTRACT: Dam removal has been proposed as an effective method of river restoration, but few integrative studies have examined ecological responses to the removal of dams. In 1999, we initiated an interdisciplinary study to determine ecological responses to the removal of a 2 m high dam on lower Manatawny Creek in southeastern Pennsylvania. We used an integrative monitoring program to assess the physical, chemical, and biological responses to dam removal. Following removal in 2000, increased sediment transport has led to major changes in channel form in the former impoundment and downstream reaches. Water quality did not change markedly following removal, probably because of the impoundment's short hydraulic residence time (less than two hours at base flow) and infrequent temperature stratification. When the impoundment was converted to a free flowing reach, the composition of the benthic macroinvertebrate and fish assemblages in this portion of Manatawny Creek shifted dramatically from lentic to lotic taxa. Some fish species inhabiting the free flowing reach downstream from the dam were negatively affected by large scale sediment transport and habitat alteration following dam removal, but this appears to be a short term response. Based on our observations and experiences in this study, we provide a list of issues to evaluate when considering future dam removals.  相似文献   

19.
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.  相似文献   

20.
ABSTRACT: This work was the development of a model for analyzing the social components of a flood control or sociological-hydrologic decision process. A general conceptual system was developed from the study of an actual decision. Mathematical values were determined for the social and behavioral variables and these elements were transposed into a mathematical linear model providing a set of equations from which the system could be simulated with the computer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号