首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The homing behavior of scalloped hammerhead sharks (Sphyrna lewini) to and fro between Espiritu Santo Seamount and Las Animas Island and the surrounding pelagic environment was studied to reveal their mechanisms of navigation in the oceanic environment. Four sharks were tagged with ultrasonic transmitters and tracked at the former location and one shark at the latter site during July, August, or September between 1981 and 1988. Hammerhead swimming movements were highly oriented: the mean coefficient of concentration (r) for sets of ten consecutive swimming directions recorded during eight homing movements by three hammerhead sharks ranged from 0.885 to 0.996. Drift within a current could not explain this directionality, since highly variable directions were recorded from a transmitter floating at the sea surface after becoming detached from a shark. Forward swimming momentum was an unlikely explanation, since highly directional swimming was maintained for a period of 32 min with only a gradual change in course. To maintain directionality over this period, an environmental property should be necessary for guidance. The hammerheads swam at night, with repeated vertical excursions ranging from 100 to 450 m deep, out of view of either the sea surface or the sea floor. The sharks' vertical diving movements were compared to distributions of spectral irradiance (relative to elasmobranch scotopic and photopic visual sensitivities), temperature, and current-flow directions in the water column. No relationships were evident between these properties and the sharks' oriented swimming movements. Movements of scalloped hammerhead sharks to and from a seamount were compared to topographic features in bathymetry and geomagnetic field leading away from the seamount. Sharks swam repeatedly over fixed geographic paths, and these paths occurred less often along submarine ridges and valleys than maxima and minima in the geomagnetic field. No significant difference existed between the degree of association of points from the sharks' tracks and points from track simulations and 20° changes in the slope of the depth record. On the other hand, significantly more points from the sharks' tracks were associated with slope changes in the magnetic intensity record than points from track simulations. A magnetic intensity gradient of 0.037 nanoteslas/m (nT/m) existed at 175 m depth, where a shark swam directionally, and this gradient was three times steeper than that measured at the sea surface and exceeded that recorded at a depth of 200 m. The hammerheads are hypothesized to find the seamount using geomagnetic topotaxis. The shark could be attracted to and move back and forth along ridges and valleys, features in the relief of magnetic field intensities occurring over a geographical area.  相似文献   

2.
Are pelagic species such as sharks and tuna distributed homogenously or heterogeneously in the oceans? Large assemblages of these species have been observed at seamounts and offshore islands in the eastern tropical Pacific, which are considered hotspots of pelagic biodiversity. Is the species distribution uniform at these hotspots or do species aggregate at a finer spatial scale at these sites? We employed three techniques to demonstrate that the aggregations of scalloped hammerhead sharks, Sphyrna lewini, and other pelagic species were confined to the southeastern corner of Wolf Island in the Galapagos Marine Reserve. Coded ultrasonic transmitters were placed on individuals at this site and at another aggregation site at Darwin Island, separated from Wolf by 40 km, and they were detected by monitors moored at the southeastern corner of Wolf Island and rarely by monitors deployed at other sites around the island. Hammerhead sharks, carrying depth-sensing continual transmitters, were tracked for two-day periods in a vessel and shown to reside a disproportionately large fraction of their time at the southeastern corner. Visual censuses were carried out seasonally at the eight monitor sites at Wolf Island, recording the abundance of one species of tuna, four species of jacks, and a number of other species. The highest diversity and abundance of these species occurred in the southeastern corner of the island. Our results support the use of hammerhead sharks as indicator and umbrella species for pelagic hotspots on a fine scale.  相似文献   

3.
Appropriate inference for stocks or species with low-quality data (poor data) or limited data (data poor) is extremely important. Hierarchical Bayesian methods are especially applicable to small-area, small-sample-size estimation problems because they allow poor-data species to borrow strength from species with good-quality data. We used a hammerhead shark complex as an example to investigate the advantages of using hierarchical Bayesian models in assessing the status of poor-data and data-poor exploited species. The hammerhead shark complex (Sphyrna spp.) along the Atlantic and Gulf of Mexico coasts of the United States is composed of three species: the scalloped hammerhead (S. lewini), the great hammerhead (S. mokarran), and the smooth hammerhead (S. zygaena) sharks. The scalloped hammerhead comprises 70-80% of the catch and has catch and relative abundance data of good quality, whereas great and smooth hammerheads have relative abundance indices that are both limited and of low quality presumably because of low stock density and limited sampling. Four hierarchical Bayesian state-space surplus production models were developed to simulate variability in population growth rates, carrying capacity, and catchability of the species. The results from the hierarchical Bayesian models were considerably more robust than those of the nonhierarchical models. The hierarchical Bayesian approach represents an intermediate strategy between traditional models that assume different population parameters for each species and those that assume all species share identical parameters. Use of the hierarchical Bayesian approach is suggested for future hammerhead shark stock assessments and for modeling fish complexes with species-specific data, because the poor-data species can borrow strength from the species with good data, making the estimation more stable and robust.  相似文献   

4.
Fish at the top of the food chain bioaccumulate and biomagnify toxic metals including mercury (Hg), at a higher rate than nonpredatory fish. However, although some top predator fish species are important in the human diet, the risks for consumers in Mexico are difficult to evaluate due to the scarce baseline information available. In the present article, data on the total mercury (THg) concentrations found in edible tissues of different species of sharks, rays, large pelagic fishes and groupers from the Gulf of California are presented and compared with national and international health guidelines. During 2003 and 2004, 73 shark dorsal tissue samples, 52 ray samples, 66 large pelagic fish samples and 16 grouper samples were collected at different sites along the Gulf of California. Samples were digested in a microwave system and analyzed by cold vapor atomic absorption spectrophotometry. Thirty samples (14%) showed concentrations of Hg above the national statutory limit of 1?mg?kg?1, from which 25 samples were sharks and 3 were large pelagic fishes. A positive correlation was found between the natural log of THg [ln(THg)] and total length (TL cm) in species of sharks, rays and groupers. The Teacapán estuary in Sinaloa was detected as a possible source of Hg into the Gulf of California due to historic mining in the watershed. Mean Hg concentrations exceeded the regulatory limit of 1?mg?kg?1 in the following highly commercial shark species: smooth hammerhead, pelagic thrasher, pacific sharpnose shark, dusky shark, scalloped hammerhead, and whitenose shark, in that order. It is recommended that preventive food advisories be issued with respect to these species until further investigations are conducted.  相似文献   

5.
A cryptic lineage of hammerhead shark closely related to but evolutionarily distinct from the scalloped hammerhead (Sphyrna lewini) was recently documented in the western North Atlantic Ocean. Here, we demonstrate using nuclear and mitochondrial DNA sequences that this cryptic lineage also occurs in the western South Atlantic Ocean, extending its distribution >7,000 km from its only previously reported location. Our results also further validate the existence of this evolutionarily distinct hammerhead shark lineage. The southern hemisphere cryptic individuals were 1.6 and 5.8% divergent from S. lewini (sensu stricto) for the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial control region loci, respectively, and formed a strongly supported, reciprocally monophyletic sister group to sympatric S. lewini. Coalescent analysis (ITS2 locus) yielded a divergence estimate of ~4.5 million years between S. lewini and the cryptic lineage. Given expanding concerns about overfishing of the large-bodied hammerhead sharks, this cryptic lineage needs to be formally recognized and incorporated into shark management and conservation planning to avoid the inadvertent, potential extirpation of a unique hammerhead lineage.  相似文献   

6.
The Hawaiian stingray, Dasyatis lata, is a common benthic elasmobranch in nearshore Hawaiian waters. Acoustic telemetry was used to track the movements of seven rays in Kaneohe Bay, Oahu, Hawaii. Rays were tracked continuously over 31-74 h periods. Geographical movements were analyzed to determine space utilization and rate of movement. Rays were found to utilize significantly larger activity spaces at night (0.83ǂ.70 km2) (mean-SD) than during the day (0.12ǂ.15 km2). Mean total activity space for rays tracked was 1.32ǂ.75 km2. Rates of movement were also significantly higher at night (0.34ǂ.30 km h-1) than during the day (0.15ǂ.22 km h-1). Average straight-line swimming speed was 0.64ǂ.16 km h-1, with a maximum observed swimming speed of 1.9 km h-1. Tidal stage had no effect on rate of movement. Comparison with previously published data on juvenile scalloped hammerhead sharks, Sphyrna lewini, in Kaneohe Bay revealed a high degree of overlap in habitat use and time of activity, suggesting possible ecological interactions between these two species.  相似文献   

7.
A stereophotographic technique for determining size and relative position of free-swimming sharks is described and illustrated for schooling scalloped hammerhead sharks (Sphyrna lewini). The method yields total length and nearest-neighbor, interindividual distance; and each of these dimensions is expressed as a function of the shark's distance into a school on the vertical and horizontal planes. Stereopairs of photographs were taken by an aligned, beam-mounted pair of cameras (Nikonos III). The scale to determine the length of a shark from the paired photographic images was obtained from the horizontal displacement between the images. Displacement was correlated with optical axis separation from photographs of a scaled staff at known distances from the camera. Image dimensions on the photographs were measured by projecting a scale onto the stage through a camera lucida. The precision of repeated measurements of a 50 cm section of a scaled staff at increasing distances from the cameras of 2, 4, and 8 m was ±5.0%. Lengths of the sharks ranged from 109 to 371 cm, with a median of 178 cm, for 3 offshore sites in the Gulf of California during July and August 1979. At one site, El Bajo Gorda, lengths increased with both distance from the camera and distance into the group; in contrast, the interindividual distances (head-to-head) did not vary with distance into the group and possessed a median of 232 cm.  相似文献   

8.
C. Lowe 《Marine Biology》2001,139(3):447-453
Oxygen consumption of juvenile scalloped hammerhead sharks, Sphyrna lewini, was measured in a Brett-type flume (volume=635 l) to quantify metabolic rates over a range of aerobic swimming speeds and water temperatures. Oxygen consumption (log transformed) increased at a linear rate with increases in tailbeat frequency and swimming speed. Estimates of standard metabolic rate ranged between 161 mg O2 kg-1 h-1 at 21°C and 203 mg O2 kg-1 h-1 at 29°C (mean-SD: 189ᆣ mg O2 kg-1 h-1 at 26°C). Total metabolic rates ranged from 275 mg O2 kg-1 h-1 at swimming speeds of 0.5 body lengths per second (L s-1) to a maximum aerobic metabolic rate of 501 mg O2 kg-1 h-1 at 1.4 L s-1. Net cost of transport was highest at slower swimming speeds (0.5-0.6 L s-1) and was lowest between 0.75 and 0.9 L s-1. Therefore, these sharks are most energy efficient at swimming speeds between 0.75 and 0.9 L s-1. These data indicate that tailbeat frequency and swimming speed can be used as predictors of metabolic rate of free-swimming juvenile hammerhead sharks.  相似文献   

9.
Movements and habitat preferences of sharks relative to a central location are widely documented for many species; however, the reasons for such behaviors are currently unknown. Do movements vary spatially or temporally or between individuals? Do sharks have seasonal habitat and environmental preferences or simply perform movements at random at any time of the year? To help understand requirements for the designation of critical habitats for an endangered top predator and to develop zoning and management plans for key habitats, we examined vertical and horizontal movements, and determined habitat and environmental preferences of scalloped hammerhead sharks (Sphyrna lewini). We tracked seven hammerheads for 19–96 h at Wolf Island (1.38ºN, 91.82ºW) between 2007 and 2009 using ultrasonic transmitters with depth and temperature sensors, and we profiled temperature through the water column. Movements of individual hammerheads fell in two classes: constrained (remaining near the island) and dispersive (moving offshore to pelagic environments). The central activity space or kernel off the southeast side of Wolf Island was small and common to most, but the area varied among individuals (mean ± SE 0.25 ± 0.2 km2), not exceeding 0.6 km2 for any of the sharks, and not changing significantly between seasons. In general, hammerheads showed preference for the up-current habitat on the eastern side of Wolf Island in both the warm and cold seasons. However, the depth of sharks varied with season, apparently in response to seasonal changes in the vertical structure of temperature. Hammerheads performed frequent vertical excursions above the thermocline during offshore movements and, in general, were observed to prefer temperatures of 23–26 °C found above the thermocline. At times, though individuals moved into the thermocline and made brief dives below it. Our results provided evidence that hammerheads (1) are highly selective of location (i.e., habitat on up-current side of island) and depth (i.e., top of the thermocline) while refuging, where they may carry out essential activities such as cleaning and thermoregulation, and (2) perform exploratory vertical movements by diving the width of the mixed layer and occasionally diving below the thermocline while moving offshore, most likely for foraging.  相似文献   

10.
Surveys of genetic variation within cosmopolitan marine species often uncover deep divergences, indicating historical separation and potentially cryptic speciation. Based on broad geographic (coastal eastern North America, Gulf of Mexico, western Africa, Australia, and Hawaii) and temporal sampling (1991–2003), mitochondrial (control region [CR] and cytochrome oxidase I [COI]) and nuclear gene (lactate dehydrogenase A intron 6 [LDHA6]) variation among 76 individuals was used to test for cryptic speciation in the scalloped hammerhead, Sphyrna lewini (Griffith and Smith). CR and COI gene trees confirmed previous evidence of divergence between Atlantic and Indo-Pacific scalloped hammerhead populations; populations were reciprocally monophyletic. However, the between-basin divergence recorded in the mtDNA genome was not reflected in nuclear gene phylogenies; alleles for LDHA6 were shared between ocean basins, and Atlantic and Indo-Pacific populations were not reciprocally monophyletic. Unexpectedly, CR, COI, and LDHA6 gene trees recovered a deep phylogenetic partition within the Atlantic samples. For mtDNA haplotypes, which segregated by basin, average genetic distances were higher among Atlantic haplotypes (CR: D HKY=0.036, COI: D GTR=0.016) than among Indo-Pacific haplotypes (CR: D HKY=0.010, COI: D GTR=0.006) and approximated divergences between basins for CR (D HKY=0.036 within Atlantic; D HKY=0.042 between basins). Vertebral counts for eight specimens representing divergent lineages from the western north Atlantic were consistent with the genetic data. Coexistence of discrete lineages in the Atlantic, complete disequilibrium between nuclear and mitochondrial alleles within lineages and concordant partitions in genetic and morphological characters indicates reproductive isolation and thus the occurrence of a cryptic species of scalloped hammerhead in the western north Atlantic. Effective management of large coastal shark species should incorporate this important discovery and the inference from sampling that the cryptic scalloped hammerhead is less abundant than S. lewini, making it potentially more susceptible to fishery pressure.  相似文献   

11.
Six Greenland sharks, Somniosus microcephalus (Bloch and Schneider, 1801), 190–355 cm fork length, were tracked under land-fast sea ice off northern Baffin Island (73.2°N; 85.3°W) between 16 and 28 May 1999, using ultrasonic telemetry. The sharks were tracked continuously for periods of 5.5–13.0 h, with the tracks of two individuals lasting 31.4 and 42.8 h, respectively, each with an interval when the track was lost. Several sharks dove after release and moved along the ocean bottom for the duration of the tracking period, while others varied their movements regarding course and depth. Two sharks made repeated visits to within 11 m of the ice–water interface from deeper water. The tracked sharks exhibited no apparent depth or temperature preferences, and pooled data indicated that sharks remained deep during the morning and gradually moved into shallower depths through the afternoon and night. Rates of descent (average=0.099 m s–1) were significantly greater than rates of ascent (average=0.058 m s–1) for all sharks, and the average rate of horizontal movement over ground was estimated as 0.215 m s–1. Based on the movements of tracked sharks and information contained in the literature, S. microcephalus may prey on seals in areas covered by land-fast sea ice.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
Fishing pressure has increased the extinction risk of many elasmobranch (shark and ray) species. Although many countries have established no‐take marine reserves, a paucity of monitoring data means it is still unclear if reserves are effectively protecting these species. We examined data collected by a small group of divers over the past 21 years at one of the world's oldest marine protected areas (MPAs), Cocos Island National Park, Costa Rica. We used mixed effects models to determine trends in relative abundance, or probability of occurrence, of 12 monitored elasmobranch species while accounting for variation among observers and from abiotic factors. Eight of 12 species declined significantly over the past 2 decades. We documented decreases in relative abundance for 6 species, including the iconic scalloped hammerhead shark (Sphyrna lewini) (?45%), whitetip reef shark (Triaenodon obesus) (?77%), mobula ray (Mobula spp.) (?78%), and manta ray (Manta birostris) (?89%), and decreases in the probability of occurrence for 2 other species. Several of these species have small home ranges and should be better protected by an MPA, which underscores the notion that declines of marine megafauna will continue unabated in MPAs unless there is adequate enforcement effort to control fishing. In addition, probability of occurrence at Cocos Island of tiger (Galeocerdo cuvier), Galapagos (Carcharhinus galapagensis), blacktip (Carcharhinus limbatus), and whale (Rhincodon typus) sharks increased significantly. The effectiveness of MPAs cannot be evaluated by examining single species because population responses can vary depending on life history traits and vulnerability to fishing pressure.  相似文献   

13.
The short-term movements and behaviour of whale sharks (Rhincodon typus Smith, 1828) during March 1994 and April 1997 are reported from data collected by acoustic tracking and archival tags at Ningaloo Reef on the north west coast of Western Australia. Sharks were tracked for up to 26 h and generally swam slowly at ≃0.7 m s−1 parallel to the reef edge; occasionally they swam in a wide arc adjacent to passes in the reef. All tracked sharks made regular dives through the water column, mostly from the surface to near the bottom. These dives did not appear to be related to hydrographic features, and the sharks were probably searching the water column for food. Most sharks were accompanied by other fishes, usually the golden trevally Gnathanodon speciosus. Received: 19 January 1999 / Accepted: 22 June 1999  相似文献   

14.
Tiger sharks are important predators in the seagrass ecosystem of Shark Bay, Australia. Although sharks appear to return to a long-term study site within the Eastern Gulf periodically, the extent of their long-term movements is not known. Five sharks fitted with satellite transmitters showed variable movement patterns. Three sharks remained within the Shark Bay region and another made a 500 km round-trip excursion to oceanic waters northwest of the bay. These four sharks showed relatively low displacement rates relative to sharks tracked over shorter time periods, suggesting that sharks move through large home ranges that include Shark Bay. Although no reliable position fixes were obtained for the fifth shark, we were able to use the timing of satellite uplinks and the position of the satellite to determine that it had moved at least 8,000 km to the coastal waters of southeast Africa in 99 days—the longest recorded movement by a tiger shark. This movement and previously documented trans-Atlantic movements suggest that tiger shark populations may mix across ocean basins and that tiger sharks are subject to anthropogenic effects at great distances from protected waters. Finally, our method for using single satellite uplinks may be useful in estimating movements for wide-ranging species that rarely provide high quality location estimates.  相似文献   

15.
Marine top predators are common at offshore bathymetric features such as islands, atolls, and seamounts, where most pelagic reef fish reside, while certain sharks perform inter-island movements between these formations. Scalloped hammerhead sharks are known to school in great numbers at small islands and seamounts in the eastern tropical Pacific (ETP) and are very susceptible to fisheries while moving into the open sea. It is, therefore, essential to understand hammerhead inter-island movements and environmental effects to provide baseline information for their conservation and management within and beyond an insular marine protected area. Movements of scalloped hammerheads were analyzed in the Galapagos Marine Reserve (GMR) and ETP, and environmental factors were linked to their movements. Hammerheads were tagged (N = 134) with V16 coded pingers (July 2006 to July 2010) in the northern Galapagos and detected at listening stations around four islands in the GMR and two isolated islands in the ETP, 700 and 1,200 km away. Hammerheads formed daytime schools at specific locations, but dispersed at night. Overall, more daytime than nighttime detections were recorded at all receivers in the northern Galapagos Islands, and more detections in the up-current sides of these islands. Hammerheads remained more days at the northern islands during part of the warm season (December–February) compared to the cool; however, fewer individuals were present in March–June. Movement modes were diel island excursions (24-h cycles) in the northern Galapagos and inter-island in the GMR and ETP at different scales: (1) short back-and-forth (<50 km, SBF), <5 days cycles, (2) medium distance (50–300 km, MDT), 5–20 days, and (3) long distance (>300 km, LDT), 15–52 days. The high degree of inter-island connectivity of hammerheads within the northern GMR is striking compared to the almost nil movement to the central GMR. A seasonal migratory pattern to locations offshore is indicated by (1) fewer hammerheads observed in the northern GMR during part of the warm season (March–June) and (2) evidence of LDT movements from the northern GMR to other islands in the ETP. LDT movements of mature female hammerheads are possibly associated with pupping areas. Our results indicate that currents, season, and individual behavior mainly drive inter-island movements of hammerheads at small (SBF) and medium (MDT) scales. These findings have important implications for the management of a highly mobile and endangered top predator within a marine protected area and beyond.  相似文献   

16.
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.  相似文献   

17.
The degree to which white sharks, Carcharodon carcharias, are social while hunting is unclear. Our aim was to describe the behavior and interactions among white sharks hunting seals near a seal colony. We attached ultrasonic beacons to five adult white sharks, 4.5–5.2?m long, and recorded their movements and behavior toward each other over a 15-day period in October 1997 at Año Nuevo Island, California. This site is home to colonies of four species of seals and sea lions. Two additional sharks, females 5.5 and 4.7?m in length, were later tracked intensively during periods of 12 and 3?days during October 1998 and November 1999, respectively. We recorded stomach temperature (indicative of feeding on warm-bodied seals) and swimming depths from the 5.5-m female, swimming speed and depth from the 4.7-m female. We monitored the movements and behavior of these sharks using an array of sonobuoys moored near the island; the receptive field measured 1?km2. Our principal findings were: (1) the sharks spent a mean time of 39.5% of each day patrolling within the receptive field; (2) no shark ever moved far out of it; (3) the sharks spent an equal amount of time and activity in the receptive field at all times of the day, daytime, twilight, and nighttime; (4) movements with respect to the island rookery were most often back and forth parallel to the shoreline, (5) tracks of three sharks, tagged at the same time and place, overlapped more often than those of the other two sharks; and (6) some sharks patrolled certain areas in the field preferentially, but there was no conclusive evidence that they defended these areas as territories. Feeding appeared to be infrequent: only two likely feeding bouts occurred during a cumulative 78-day/shark period that individuals were monitored at Año Nuevo Island. The behavior and movements of the sharks were consistent with a hunting strategy, in which individuals search for prey independently but, at the same time, remain close enough to each other to “sense” and exploit a kill by any one of them by joining in on the kill to feed.  相似文献   

18.
We used a combination of satellite telemetry, archival and conventional tags to show that white sharks made broad-scale movements consistent with mixing of the population across their entire Australasian range. The capture of one of these sharks in New Zealand, some 3,550 km from the point of tagging in South Australia, provides further confirmation that white sharks sometimes move into open ocean waters and cross deep ocean basins. However, most movements were confined to shelf waters, generally in areas of less than 100 m depth and in some cases into waters of less than 5 m depth. Sharks showed considerable plasticity in swimming patterns, which included many of the behaviours reported for other species. One of the archival-tagged sharks showed separate periods of distinct swimming behaviour as it moved into different habitats and travelled between them. The changes in swimming behaviour were abrupt and suggested rapid switching of hunting strategies for different prey types in these habitats. All tracked sharks showed both prolonged periods of directional swimming in coastal waters at swimming speeds of 2–3 km h−1 as well as temporary residency in particular regions. Movements of tagged white sharks, together with data from shark control programs and bycatch records, suggest a seasonal movement northward along the east coast of Australia during the autumn–winter months and south in spring–early summer. The consistency of paths taken by white sharks in Australian waters suggests that they may follow common routes or “highways” in some areas. If so, identifying such areas may assist in reducing interactions with fishing operations and thus reduce bycatch.  相似文献   

19.
During June 1991, we studied sea birds at a mid-ocean seamount (Fieberling Guyot) in the eastern North Pacific Ocean. Avifaunal composition changed from small Procellariiformes [a storm-petrel; Oceanodroma leucorhoa (Vieillot)] away from the seamount to an assemblage dominated by larger tubenoses [mostly black-footed albatross Diomedea nigripes Audubon and Cook's petrel Pterodroma cookii (Gray)]. Compared to adjacent waters, sea-bird density and biomass within a 30-km radius centered on the seamount summit were 2.4 and 8 times higher, respectively. Individual sea-bird taxa were 2 to 40 times more abundant at the seamount relative to values reported previously from large-scale surveys of deep-ocean regions in the central North Pacific. In September 1991 we studied potential prey of sea birds in the upper water column using a neuston net and multiple opening-closing net system (MOCNESS) tows. Most potential prey types in the neuston exhibited no significant enhancement over the seamount. MOCNESS samples at 10 m depth, however, showed several prey types to be more abundant over the seamount, and the dominant size class of fish was slightly larger. We attribute the sea-bird aggregation observed at this seamount to changes in the abundance and/or behavior of pelagic organisms in the deep scattering layer (not adequately sampled in this study), perhaps augmented by migrations of seamount residents into the surface layers. Processes on and in the vicinity of seamounts may provide spatially-predictable prey to wide-ranging aerial sea birds foraging in this relatively austere environment.  相似文献   

20.
The Greenland shark (Somniosus microcephalus) is the only shark species known to inhabit ice-covered seas in the North Atlantic, but remains a missing component in most studies of Arctic food webs. In the present study, stable isotopes (SIs) of nitrogen (δ15N) and carbon (δ13C) and fatty acids (FAs) were analyzed to identify the role of Greenland sharks (sampled during June 2008–2009) in Kongsfjorden, a productive fjord on the west coast of Svalbard, Norway (~79ºN, 12–13ºE). The Greenland shark fed at a high trophic position (4.8) based on δ15N values, and δ13C confirmed that most (70 %) of their carbon was derived from phytoplankton-based food chains, which is consistent with a heavy reliance on pelagic teleosts and seals. Greenland sharks from Kongsfjorden had fatty acid profiles in both muscle and plasma (e.g., low 20:1n-9, high 22:5n-3) that suggested a low portion of Greenland halibut (Reinhardtius hippoglossoides) and high proportion of gadoids and seals in their diet compared to Greenland sharks sampled in Cumberland Sound, Canada, during April 2008, which were previously shown to derive much of their energy from Greenland halibut. The high proportions of seal fatty acids in both slow- (muscle) and fast- (plasma) turnover tissues indicate that trophic interactions between Greenland sharks and seals in Kongsfjorden are a common occurrence. Results from the present study suggest that Greenland sharks likely play a unique and significant role in Arctic marine food webs as a top predator of fishes and marine mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号