首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Surficial and subsurficial sediment samples derived from gravity cores, selected from the harbour of Patras, Greece, were analyzed for grain size, water content, bulk density, specific gravity, organic carbon content and specific activities of natural radionuclides and (137)Cs. The specific activities of (232)Th, (226)Ra, (40)K and (137)Cs were measured radiometrically. The radionuclides (238)U and (232)Th were also analyzed using the INAA. The differences found between the specific activities of the natural radionuclides measured by the two methods are of no statistical significance. The sediment cores selection was based on a detailed bathymetric and marine seismic survey. Through the study of the detailed bathymetric map and the seismic profiles it was shown that ship traffic is highly influential to the harbour bathymetry. The granulometric and geotechnical properties of the sediments and therefore the specific activities of the natural radionuclides and (137)Cs seem to be controlled by the ship traffic. Relationship between radionuclide activity concentrations and granulometric/geotechnical parameters was defined after the treatment of all the analyses using R-mode factor analysis. The natural radionuclide activities are related to the fine fraction and bulk density of the sediments, while (137)Cs is mainly influenced by the organic carbon content. In addition, (238)U and (226)Ra seem to be in close relation with the heavy minerals fraction in coarse-grained sediments with high specific gravity.  相似文献   

2.
Geothermal (ground source) heat pumps (GHP) and permeable pavement systems (PPS) have demonstrated their effectiveness in both industry and academic research during recent decades. To meet the rising demand for sustainable, recyclable and energy efficient techniques, research has focused on the combination of techniques to enhance existing or develop new applications.

This paper reports on an experimental programme that combined GHP with PPS for nutrient removal and system energy balancing. Experimental data collected over a 3-year period have provided evidence of highly efficient removal rates of up to 99% for ammonia–nitrate and biochemical oxygen demand; and 96% removal rates were obtained for orthophosphate–phosphorus. This paper also contains energy efficiency ratio (EER) and coefficient of performance (COP) calculations. Cyclic heat removal and heat rejection allowed for stable temperature and pump COP and EER sustainability. The results prove that PPS systems are appropriate for GHP installation, delivering high and stable pollutant removal with EER efficiencies between 1.5 and 5.5.

The combination of GHP with PPS has the potential to provide a new sustainable and eco-friendly practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号