共查询到20条相似文献,搜索用时 0 毫秒
1.
Three aquatic plants were examined for their ability to remove heavy metals from contaminated water: parrot feather (Myriophylhum aquaticum), creeping primrose (Ludwigina palustris), and water mint (Mentha aquatic). The plants were obtained from a Solar Aquatic System treating municipal wastewater. All the three plants were able to remove Fe, Zn, Cu, and Hg from the contaminated water. The average removal efficiency for the three plant species was 99.8%, 76.7%, 41.62%, and 33.9% of Hg, Fe, Cu, and Zn, respectively. The removal rates of zinc and copper were constant (0.48 mg/l/day for Zn and 0.11 mg/l/day for Cu), whereas those of iron and mercury were dependent on the concentration of these elements in the contaminated water and ranged from 7.00 to 0.41 mg/l/day for Fe and 0.0787 to 0.0002 mg/l/day for Hg. Parrot feather showed greater tolerance to toxicity followed by water mint and creeping primrose. The growth of creeping primrose was significantly affected by heavy metal toxicity. The selectivity of heavy metals for the three plant species was the same (Hg>Fe>Cu>Zn). The mass balance preformed on the system showed that about 60.45-82.61% of the zinc and 38.96-60.75% of the copper were removed by precipitation as zinc phosphate and copper phosphate, respectively. 相似文献
2.
Model three-component soil systems including goethite (a mineral component) and a suspension of microorganisms (a biological component) have been used to study the interaction of Pb and Zn with the mineral surface. The results show that live microorganisms markedly reduced the adsorption of these metals, especially Pb, on the goethite shell surface. In the case of Pb, this is due to a decrease in the content of its nonexchangeable form; in the case of Zn, to a decrease in the content of its exchangeably bound compounds. An organic matter preparation obtained by autoclave treatment of microorganisms has a markedly weaker effect on metal adsorption, compared to the suspension of live microbial cells. 相似文献
3.
Lake ecosystems are, in particular, vulnerable to heavy metal pollution. Tilapia nilotica is one of the aquatic organisms affected by heavy metals. Therefore, heavy metals Co, Cr, Cu, Fe, Mn, Ni, Sr and Zn were determined in different tissues of T. nilotica (ages 1, 1.5, 2, 2.5 and 3 years), which include the muscle, gill, stomach, intestine, liver, vertebral column and scales, to assess the fish pollution with heavy metals. In addition, the study was extended to determine these elements in the aquatic plant (Najas armeta), sediment and water of Khor E1-Ramel in Nasser Lake (Egypt). The study showed that of all the fish parts, fish liver accumulated the highest levels of Cu and Zn. Manganese presented in the intestine and stomach in the highest concentration. Scales exhibited the highest levels of Co, Cr, Ni and Sr, while the gill and vertebral column contains the lowest level of the studied elements. Heavy metals in different parts of T. nilotica differ with the fish growth and extraction rate of these elements from sediment, aquatic plant and lake water. Heavy metals under study in the edible parts of the investigated fish were in the safety permissible levels for human uses. 相似文献
5.
Using the field pot-culture and sample-analysis method, 54 weed species belonging to 20 families and 31 weed species belonging to 17 families were systematically examined as to whether they can exclude the uptake of heavy metals. After a systematic identification, it was determined that Oenothera biennis and Commelina communis were Cd-excluders and Taraxacum mongolicum was a Zn-excluder. O. biennis is a potential Cd-excluder, but also a potential Cu-excluder. The research raises the possibility of making a major breakthrough in the application of metal excluders for safe agro-production in the future. 相似文献
6.
Dehydrogenase enzyme activity (DHA) assay method using resazurin was accommodated for measuring of toxicity of compound contaminants on uncharacterized microbial communities present in any given soil. The method was used to compare the toxic effect of heavy metal and polycyclic aromatic hydrocarbon (PAH) contaminant mixture (Cr, Pb, Cu, Cd, Pyrene) on four typical Estonian soils covering a range of compositions. The method proved to be useable on all soils; the sensitivity of soil microbiology to toxic effect of contaminants was found to have a negative correlation with Ca and organic matter (OM) content and a positive correlation with amorphous phase content of soils. 相似文献
7.
Kolleru lake is the largest fresh water lake in the districts of East and West Godavari of Andhra Pradesh, India. Many anthropogenic sources contribute to the heavy metal pollution in the lake and the bioaccumulation of heavy metals in fish helps in assessing the aquatic pollution. Total contents and fractionation of selected heavy metals, viz., Zn, Cu, Cd, Pb, Cr, Ni and Co were measured in sediment sample and three edible fish. The investigation aimed at revealing differences in the accumulation pattern of heavy metals in fish inhabiting sediments characterized by varying metal bioavailability. The metal concentrations were found to be greater than the background concentrations of sediments indicating the anthropogenic origin of metals. Good recovery values were obtained for metal contents in sediments and fish. Large fractions of Zn, Cd and Cu were associated with mobile fraction of sediment and showed greater bioaccumulation in fish whereas Ni and Co were least mobilisable. The results clearly indicate that the fish of Kolleru lake are contaminated with metals and not advisable for human consumption. 相似文献
9.
This study was conducted to investigate the effectiveness of aerobic biological treatment in removal of nitrogen, phosphorous, and heavy metals from a unique anaerobic liquid waste, produced at a solid waste-to-methane anaerobic digestion facility. Laboratory scale continuous flow activated sludge reactors were employed in this study. The liquid waste has moderate BOD/COD ratio with BOD concentration of 1300 mg/L and high concentration of essential nutrients, making the liquid waste biologically treatable. Results showed that aerobic biological treatment can remove nitrogen and phosphorous on the order of 85%. Metal removal efficiencies vary widely for 11 metals studied in this investigation. 相似文献
10.
The sensitivity of nine marine microalgal species (consisting of five divisions and seven genera) to the five heavy metals, Cu(II), As(V), Sb(III), Pb(II) and Cd(II) was studied by using a fluorometric growth-inhibition assay with 96-well microplates. The algal strains studied were Cylindrotheca sp. and the LPP group that respectively characterize aggregating and filamentous types, and Chlorococcum littorale, Chlorococcum sp., Isochrysis galbana, Tetraselmis tetrathele, Heterocapsa sp., Synechococcus sp. and Prasinococcus sp. for types that occur as single cells. A good linear relationship was observed between the chlorophyll a concentration and intensity of chlorophyll fluorescence (485-nm excitation filter and 645-nm emission filter) when the chlorophyll a concentration was within the range of 0.10-5.0 microg ml(-1). A starting cell concentration of 0.10 or 0.25 microg Chl a ml(-1) was therefore selected. In accordance with OECD 201 standard procedures, the IC(50) value (concentration of a metal producing 50% growth inhibition relative to the control) was determined 72 h after adding a heavy metal by using the biomass integral. The microplate toxicity test used in this study is considered to be applicable to diverse algae, not only enumerating species but also hardly enumerating ones. 相似文献
11.
Iron and steel manufacture has been ranked as the largest industrial source of environmental contamination in the USA; the wastes generated in their production processes contain heavy elements that can be a source of contamination, and natural radionuclides that can produce an occupational and/or public radiological impact. In this work the potential occupational effective dose rate (μSv/y) due to inhalation in four integrated steel-making factories from Egypt has been evaluated, by assuming a well defined scenario and with basis in the 210Pb and 210Po activity concentrations determined in ore and wastes collected in the aforementioned factories. Activity concentrations, in Bq/kg, of 210Pb and 210Po, and leachable Pb and Fe were measured using gamma-ray spectrometry based on HPGe detector, alpha particle spectrometry based on PIPS detector, and inductively coupled plasma-mass spectrometry (ICP-MS). Levels of 210Pb and 210Po in the range of <DL-4238 and 1-5660 Bq/kg, respectively, were found. According to the assumed scenarios, the occupational exposures by inhalation are much lower than the recommended annual effective dose limit, although the environmental impact due to waste storage and/or use should be considered based on case by case evaluation. 相似文献
12.
Effects of industrial pollution on the behaviour of radionuclides in spruce forest ecosystems were studied along a gradient from of a copper-nickel smelter in Monchegorsk, NW Russia. A reference site was situated in Lapland, Finland, 152 km west of Monchegorsk. Most of the total 137Cs activity in soil was in mineral (E and B) horizons, except at the reference site where the major part was still in the organic surface layer. Most of the total 90Sr activity still remaining in the soil profile was found in the surface layer, but the relative amount decreased with increasing level of industrial pollution. Pollutants from the smelter clearly affected the chemical speciation of radionuclides. Smaller amounts of exchangeable radionuclides were present in the organic surface layer at the most polluted sites. The decline of 137Cs with decreasing distance from the smelter correlated strongly with a similar depletion in exchangeable K and Mg. Total concentrations of 137Cs and 90Sr showed high correlations with exchangeable cations, particularly in the E and upper B horizon. A sudden change in behaviour of 137Cs in the lower B horizon may be associated with changes in clay mineralogy along the soil profile caused by weathering. 相似文献
13.
Total concentrations of Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Pb and Zn have been estimated in soil (A-horizon) and in leaves and stem samples of two Mediterranean species (Nerium oleander L. and Pinus pinea L.) growing in an industrial area in Spain (Huelva). Both species showed a different behaviour for the elements studied. Bark and leaves of both species acted as excluders of Al, Ba, Cr, Fe and Pb, N. oleander acted as indicator of Cu and Zn and, needles and bark of P. pinea behaved as accumulators of Cu. The enrichment ratio data indicated that Cu in soil and plant was enhanced with anthropogenic activities, with industrial activities being the primary contributor for Cu. All the other elements studied were controlled by natural source variations, but Pb could also be anthropogenically enhanced. Wood did not accumulate pollutants, with the translocation from bark being rather reduced. Uptake patterns of metals into foliage and bark tissues were more or less the same in both species for almost all the studied elements, which indicates that both plant parts could be indifferently used as biomonitors. 相似文献
14.
Sediment samples were analyzed for Cd, Cr, Cu, Pb, Hg and Zn by AAS. The highest concentrations (ppm) for Cu (26.1+/-4.8), Hg (0.2+/-0.05), Pb (30.7+/-5.6) and Zn (45.4+/-13.1) were found at approximately 25 m from the shoreline. Generally, heavy metals concentration in the sediment decreased with increasing distance from the shoreline except for Cd and Cr whose highest concentrations were found at approximately 2000 m from the shoreline.The data also indicated that sediment samples which were collected at the shores within the urban area of Mwanza showed elevated levels of Pb (54.6+/-11.1 ppm) and Zn (83.7+/-21.5 ppm). However, the highest concentrations of Cd (7.0+/-2.1 ppm), Cr (12. 9+/-1.0 ppm) and Hg (2.8+/-0.8 ppm) were recorded at sampling stations which were adjacent to river mouths. 相似文献
15.
Radionuclides and heavy metals were studied in green, brown and red Black Sea macroalgae by low-level gamma spectrometry and atomic absorption spectrometry. The samples were collected along the whole Bulgarian coast from 1996 to 2004. The levels have been depending on algae species, locations and year of sampling. The highest 137Cs levels were found in red Ceramium rubrum species from all studied locations, while 226Ra and 210Pb were up to three orders of magnitude higher in Bryopsis plumosa. The data showed that the red algae species (Rhodophyta) accumulate more heavy metals than the other phyla (except for Fe whose values were higher in green algae). The data confirmed that algae are valuable indicators of the environmental contamination. The observed elevated levels were mainly due to Danube, Dnieper and Dnester inputs in the NW corner of the Black Sea. 相似文献
16.
Soil pollution with Cr, Cu, Ni, and Pb oxides or crude oil has an adverse effect on biological properties of ordinary chernozem. The degrees of their deterioration in laboratory and field experiments do not differ statistically, indicating that the results of laboratory modeling may be correctly extrapolated to the field scale. Pollution of ordinary chernozem with oil affects biological properties of both topsoil and subsoil horizons, while Pb is harmful only for the upper soil horizon. Concentrations in excess of 25 mg/kg for Pb and 0.25% for oil in ordinary chernozem are not ecologically safe (not allowable). 相似文献
17.
In most aqueous environmental systems, inorganic and organic metal complexes represent a significant contribution to the total soluble metal. Metal adsorption is often a highly pH-dependent phenomena. Such behavior can generally be attributed to changes in metal speciation with solution acidity as well as variation in the extent of surface protonation. Thus, because adsorbability may vary drastically between different metal species, (e.g. Cu 2+ (aq) compared to CuOH +) a knowledge of metal species distribution is essential to understanding and interpreting metal adsorption behavior.Organic complexation has been reported to enhance, suppress and have no perceptible effect on trace metal adsorption. Such differences arise because adsorption depends on factors such as the ligand/metal ratio, adsorbability of the free ligand, and various solution parameters (e.g. pH). Most important in determining the effect of complexation on adsorption is the adsorbability of the resulting complexes. Thus, it is difficult to make generalizations about the influence of organic complexation on metal adsorption.Adsorption of metal complexes is frequently reported to be predominantly coulombic in nature; that is, binding of an anionic or cationic complex to an oppositely charged colloidal particle. However, electrostatic forces can often represent an insignificant contribution to the total free energy of adsorption and can be overshadowed by chemical reactions with the surface, hydrogen bonding, and hydrophobic effects. 相似文献
18.
The current study investigates on correlating the heavy metal contamination, its distribution, and the human health risk associated with all three components of an aquatic ecosystem. For this purpose, water, sediment, and fish samples (three species, notably Notopterus notopterus, Clarias batrachus, and Channa striata) from Deepor Beel were considered, and their heavy metal contamination and distribution were determined. The corresponding health risks were then evaluated for six different heavy metals; Cr, Cd, Fe, Mn, Cu, and Pb. Pb and Mn were found to significantly impact the non-carcinogenic human health risks for the water column. Simultaneously, Cd was considered to possess the highest potential for both carcinogenic and non-carcinogenic health effects in the sediment column. Cd also played a critical role in the fish samples' bioaccumulation factor, with the liver showing the maximum bioaccumulation potential. Furthermore, children were found to have considerably higher effects (both carcinogenic and non-carcinogenic) than adults. Finally, the sediment column was found to substantially contribute to the bioaccumulation factor in the fish biota, compared to the water column. The results of this investigation will thus prove consequential in designing, monitoring and restoring aquatic ecosystems. 相似文献
19.
Based on 30-year monitoring of Ni 2+ and Cu 2+ concentrations in the organic horizon of Albic Rustic Podzols and the foliage of six plant species, a dynamic trend in the level of heavy metal accumulation in the components of forest ecosystems of the Kola Peninsula has been revealed against the background of five- to eightfold reduction of pollutant emissions. The direction of the trend has been found to differ: the size of polluted area and pollution level increase with time, while the concentrations of heavy metals in plants decrease due to reduction in their input from the polluted air. 相似文献
20.
Radium and heavy metal contaminated tailings and scales resulting from Polish hard coal mining were investigated for their mobilisation potential by using leaching methods. The main focus is set on a three-step extraction procedure proposed by BCR (Bureau Communautaire de Référence, now Standards Measurements and Testing Programme) of the European Union, which was used for investigating the availability of radium isotopes. In addition, the results of a Polish extraction procedure for the heavy metals' water solubility are presented for rough comparison. After a special treatment, the BCR-reagents were measured by gamma-spectrometry to define their radium activity concentrations; the heavy metal content in the water soluble fractions was determined by ICP-AES. The samples were collected at two different sites influenced by the discharge of pit water from hard coal mining. The tailings were taken from a former tailing pond, which now is no longer in use, but the settled material is still present. At another abandoned and meanwhile flooded tailing pond, the scales were scraped from the inside of a discharge tube. The results obtained show that there is different leaching behaviour between the radium isotopes. The tailings being characterised by surface adsorbed radium provide up to 25% of the initial (226)Ra content, (228)Ra is altogether leached up to 15%. The scales comprise stable radiobaryte (Ba[Ra]SO(4)) and can be considered as being unable to provide radium isotopes, since no trace of radium dissolution was observed. The leaching behaviour of heavy metals is similar to that of radium. Mn, Ni and Zn are dissolved by water from the tailings; the scales do not provide any. 相似文献
|