首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.  相似文献   

2.
There is increasing concern about landfilling of biodegradable wastes. Therefore, biological treatment processes such as composting and biogasification have been considered as alternative strategies for managing those wastes. In this work, life cycle assessment was employed to compare the environmental impacts of landfilling, composting, and biological treatment of municipal solid waste in S?o Paulo City, Brazil. Energy consumption, recovered resources, and emissions to air and water were quantified and analyzed in terms of their potential contribution to global warming, acidification, and nutrient enrichment impact. The results demonstrated that processes that require high levels of energy consumption, such as wastewater treatment, play an important role in the outcome of environmental impact potentials. It was found that the landfilling of all waste is generally the worst strategy from an environmental point of view. However, significant reductions in the resulting impacts can be accomplished through biogasification and composting of the biodegradable fraction. Regarding composting, the application of a biofilter for gas treatment reduced significantly the gaseous emissions.  相似文献   

3.
Poultry wastes are posing serious environmental pollution problems in Nigeria through offensive odours and promotion of fly and rodent breeding. Farmers normally dispose of their poultry wastes through heaping and burning or dumping on the farm in the fresh state. Experiments were conducted to stabilize the waste for 12 weeks by a bag process similar to static pile composting either singly or amended with sawdust or leaves. Sawdust seems to be ideal for the production of a well stabilized product which is environmentally safe. However, even the raw waste or leaf amended waste if kept for 8 to 12 weeks produced a product which has no adverse effect on the maize yield when applied at 20 tonnes/hectare. The soils were improved through organic matter and retention of plant nutrients.  相似文献   

4.
Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO2-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO2-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.  相似文献   

5.
Due to initiatives such as the clean development mechanism (CDM), reducing greenhouse gas emissions for a developing country can offer an important route to attracting investment in a variety of qualifying project areas, including waste management. To date CDM projects have been largely confined to schemes that control emission from landfill, but projects that avoid landfilling are beginning to be submitted. In considering the waste options which might be suitable for developing countries certain ones, such as energy from waste, have been discounted for a range of reasons related primarily to the lack of technical and other support services required for these more sophisticated process trains. The paper focuses on six options: the base case of open dumping; three options for landfill (passive venting, gas capture with flaring, and gas capture with energy production), composting and anaerobic digestion with electricity production and composting of the digestate. A range of assumptions were necessary for making the comparisons based on the effective carbon emissions, and these assumptions will change from project to project. The highest impact in terms of carbon emissions was from using a sanitary landfill without either gas flaring or electricity production; this was worse than the baseline case using open dumpsites. Landfills with either flaring or energy production from the collected gas both produced similar positive carbon emissions, but these were substantially lower than both open dumping and sanitary landfill without flaring or energy production. Composting or anaerobic digestion with energy production and composting of the digestate were the two best options with composting being neutral in terms of carbon emissions and anaerobic digestion being carbon negative. These generic conclusions were tested for sensitivity by modifying the input waste composition and were found to be robust, suggesting that subject to local study to confirm assumptions made, the opportunity for developing CDM projects to attract investment to improved waste management infrastructure is significant. Kyoto credits in excess of 1 tCO2e/t of waste could be realised.  相似文献   

6.
Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded.  相似文献   

7.
A simplified life cycle assessment was conducted to estimate greenhouse gas (GHG) emissions and energy production from each component of biogenic waste treated in an open dumping site, and by composting, anaerobic digestion, and incineration employed with additional options. The impact of uncertainties and sensitivities of the parameters in the treatment methods were investigated. We conducted a sensitivity analysis to identify the most sensitive parameters, and we discussed the relationship between uncertainty and sensitivity. Our results revealed that the moisture content of food waste and the biomass-derived carbon and methane concentration of the landfill gas of biogenic waste subjected to open dumping are the most sensitive parameters across all the treatment methods. The net GHG emissions from food waste treated in an open dumping site ranged over ten times (0.30 ? 3.67 Gg CO2 eq/Gg). In addition, by employing additional options for the open dumping site, including soil cover, a landfill gas collection system, shifting to a semi-aerobic condition, and energy conservation by using a gas engine, we found that the net GHG emissions could be reduced by 10, 27.9, 37.4 %, and up to 56.7 %, respectively. Shifting to a semi-aerobic system is the most effective method for reducing GHG emissions, followed by landfill gas collection.  相似文献   

8.
The anaerobic digestion of solid organic waste   总被引:5,自引:0,他引:5  
  相似文献   

9.
The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended.  相似文献   

10.
Solid waste disposal in Sri Lanka has been assessed using environmental, economic, and social indicators, based on a life cycle approach. The existing situation of open dumping in Sri Lanka was compared with that of a sanitary landfill with gas recovery, since the latter is anticipated to constitute an initial step towards sustainable development. The results revealed the extent to which sanitary landfills with gas recovery systems could contribute to reducing environmental impacts such as global warming potential, acidification potential, and eutrophication potential. Assessment of life cycle cost and damage to human health also showed results in favour of sanitary landfills with gas recovery system. The results obtained quantify the sustainability benefits of the proposed option for solid waste management, and can be useful for justifying policy measures that encourage the replacement of open dumping with sanitary landfills.  相似文献   

11.
In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal.  相似文献   

12.
Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China’s paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.  相似文献   

13.
Solid refuse fuel (SRF) produced from waste materials is a promising fuel that can be utilized for energy recovery in industries. This study considered both characterization and weighting modeling as life cycle assessment (LCA) results. This study aimed to analyze the flows of materials and energy and to evaluate the environmental impact of SRF plants using LCA and compared them with an incineration plant. Based on the results of material and energy flow analysis, SRF products had various energy potentials depending on the treatment method of municipal solid waste (MSW) and replaced the current fossil fuels by SRF combustion. Global impacts were mainly influenced by energy consumption, especially drying methods in the production of SRF, and affected the results of the weighting analysis. The SRF plant with a bio-drying option was evaluated as the best effective practice in the weighting analysis. The LCA results in this study indicated 0.021–9.88 points according to drying methods for SRF production and 1.38 points for incineration. In the sensitivity analysis, the environmental impact of SRF production was found to be significantly affected by the drying methods for MSW and the utilization of fossil energy. Thus, improvement of the drying options could significantly reduce the environmental impact.  相似文献   

14.
A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.  相似文献   

15.
Goal and scopeThe life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA.MethodFour landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses. Average, maximum and minimum literature values are considered both for combustion emission factors in flares and engines and for trace pollutant concentrations in biogas.ResultsBiogas upgrading for use as a fuel in buses appears as the most relevant option with respect to most non-toxic impact categories and ecotoxicity, when considering average values for trace gas concentrations and combustion emission factors. Biogas combustion in an engine for CHP production shows the best performances in terms of climate change, but generates significantly higher photochemical oxidant formation and marine eutrophication impact potentials than flaring or biogas upgrading for use as a fuel in buses.Interpretation and discussionHowever the calculated environmental impact potentials of landfill biogas management options depend largely on the trace gas concentrations implemented in the model. The use of average or extreme values reported in the literature significantly modifies the impact potential of a given scenario (up to two orders of magnitude for open dumps with respect to human toxicity). This should be taken into account when comparing landfilling with other waste management options. Also, the actual performances of a landfill top cover (in terms of oxidation rates) and combustion technology (in terms of emission factors) appear as key parameters affecting the ranking of biogas management options.  相似文献   

16.
We utilize life cycle assessment to trace conversion of degradable organic carbon (DOC) contained in organic waste from city markets in Da Nang, Vietnam. Our methodology makes explicit the process of conversion of DOC under aerobic and anaerobic conditions, as well as the balance of nutrients. Greenhouse gas emissions were calculated for six alternative scenarios: (i) anaerobic landfilling (current situation); (ii) semi-aerobic landfilling; (iii) landfill gas capture; (iv) composting; (v) pre-composting before landfill; and (vi) biogas production. We calculate that 1 t of waste in anaerobic landfilling emits 1.70 t CO2-eq. with life-cycle perspective. Lowest emission occurs in biogas scenario with 0.26 t CO2-eq./t. Composting occupies an intermediate position with 0.39 t CO2-eq./t. Likewise, we estimate that cost of emission reduction in solid waste sector of Vietnam is 15.13 US$/t CO2-eq., given by alternative of composting and taking anaerobic landfilling as reference. On the other hand, if social cost of carbon (SCC) is incorporated lowest cost to treat 1 t of waste is given by composting and semi-aerobic landfilling at discount rate of 5 %. However, using lower discount rates, and consequently higher values of SCC, composting and biogas production become the alternatives with lowest treatment costs.  相似文献   

17.
Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.  相似文献   

18.
In Greece more than 14,000 tonnes of infectious hospital waste are produced yearly; a significant part of it is still mismanaged. Only one off-site licensed incineration facility for hospital wastes is in operation, with the remaining of the market covered by various hydroclave and autoclave units, whereas numerous problems are still generally encountered regarding waste segregation, collection, transportation and management, as well as often excessive entailed costs. Everyday practices still include dumping the majority of solid hospital waste into household disposal sites and landfills after sterilization, still largely without any preceding recycling and separation steps. Discussed in the present paper are the implemented and future treatment practices of infectious hospital wastes in Central Macedonia; produced quantities are reviewed, actual treatment costs are addressed critically, whereas the overall situation in Greece is discussed. Moreover, thermal treatment processes that could be applied for the treatment of infectious hospital wastes in the region are assessed via the multi-criteria decision method Analytic Hierarchy Process. Furthermore, a sensitivity analysis was performed and the analysis demonstrated that a centralized autoclave or hydroclave plant near Thessaloniki is the best performing option, depending however on the selection and weighing of criteria of the multi-criteria process. Moreover the study found that a common treatment option for the treatment of all infectious hospital wastes produced in the Region of Central Macedonia, could offer cost and environmental benefits. In general the multi-criteria decision method, as well as the conclusions and remarks of this study can be used as a basis for future planning and anticipation of the needs for investments in the area of medical waste management.  相似文献   

19.
Solid waste management in Kathmandu valley of Nepal, especially concerning the siting of landfills, has been a challenge for over a decade. The current practice of the illegal dumping of solid waste on the river banks has created a serious environmental and public health problem. The focus of this study was to carry out an evaluation of solid waste management in Nepal based on published information. The data showed that > or =70% of the solid wastes generated in Nepal are of organic origin. As such, composting of the solid waste and using it on the land is the best way of solid waste disposal. This will reduce the waste volume transported to the landfill and will increase its life.  相似文献   

20.
Waste management from pulp and paper production in the European Union   总被引:1,自引:0,他引:1  
Eleven million tonnes of waste are produced yearly by the European pulp and paper industry, of which 70% originates from the production of deinked recycled paper. Wastes are very diverse in composition and consist of rejects, different types of sludges and ashes in mills having on-site incineration treatment. The production of pulp and paper from virgin pulp generates less waste but the waste has similar properties to waste from the production of deinked pulp, although with less inorganics. Due to legislation and increased taxes, landfills are quickly being eliminated as a final destination for wastes in Europe, and incineration with energy recovery is becoming the main waste recovery method. Other options such as pyrolysis, gasification, land spreading, composting and reuse as building material are being applied, although research is still needed for optimization of the processes. Due to the large volumes of waste generated, the high moisture content of the waste and the changing waste composition as a result of process conditions, recovery methods are usually expensive and their environmental impact is still uncertain. For this reason, it is necessary to continue research on different applications of wastes, while taking into account the environmental and economic factors of these waste treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号