首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transcritical CO2 Rankine cycle with liquefied natural gas (LNG) as cold source is a promising power system to utilize mid- and low-temperature heat source. Most previous works focused on thermodynamic and thermoeconomic analysis or optimization for the system. In this article, an off-design performance analysis for the system is conducted. An off-design mathematical model for the system is established to examine the variation of system performance with the variations of heat source mass flow rate and temperature. A modified sliding pressure regulation control strategy, which regulates turbine inlet pressure to keep the temperature difference between heat source temperature and turbine inlet temperature constant, is applied to control the system when off-design conditions happen. The results show that when the mass flow rate or the temperature of heat source is less or lower than that of design condition, both the net power output of system and the system exergy efficiency decrease, whereas when they are more or higher than the values of design condition, the net power output of system increases but the system exergy efficiency still decreases. In addition, both CO2 turbine and NG turbine could almost keep the designed efficiency values under the applied control strategy.  相似文献   

2.
The operation of modern horizontal axis wind turbine (HAWT) includes a number of important factors, such as wind power (P), power coefficient (CP), axial flow induction factor (a), rotational speed (Ω), tip speed ratio (λ), and thrust force (T). The aerodynamic qualities of these aspects are evaluated and discussed in this study. For this aim, the measured data are obtained from the Sebenoba Wind Energy Power Plant (WEPP) that is located in the Sebenoba region in Hatay, Turkey, and a wind turbine with a capacity of 2 MW is selected for evaluation. According to the results obtained, the maximum turbine power output, maximum power coefficient, maximum axial flow induction factor, maximum thrust force, optimum rotational speed, probability density of optimum rotational speed, and optimum tip speed ratio are found to be 2 MW, 30%, 0.091, 140 kN, 16.11 rpm, 46.76%, and 7, respectively. This study has revealed that wind turbines must work under optimum conditions in order to extract as much energy as possible for approaching the ideal limit.  相似文献   

3.
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees -inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO3/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees -inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees -inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3)m3).  相似文献   

4.
This paper aims at analyzing the feasibility of a waste heat recovery power generation plant based on parametric optimization and performance analysis using different organic Rankine cycle configurations and heat source temperature conditions with working fluid R-12, R-123, R-134a, and R-717. A parametric optimization of turbine inlet temperature(TIT) was performed to obtain the irreversibility rate, system efficiency, availability ratio, turbine work output, system mass flow rate, second-law efficiency, and turbine outlet quality, along the saturated vapor line and also on superheating at an inlet pressure of 2.50 MP in basic as well as regenerative organic Rankine cycle. The calculated results reveal that selection of a basic organic Rankine cycle using R-123 as working fluid gives the maximum system efficiency, turbine work output, second-law efficiency, availability ratio with minimum system irreversibility rate and system mass flow rate up to a TIT of 150°C and appears to be a choice system for generation of power by utilizing the flue gas waste heat of thermal power plants and above 150°C the regenerative superheat organic Rankine cycle configuration using R 123 as working fluid gives the same results.  相似文献   

5.
ABSTRACT

Stirling engines maintain attraction because of their high energy conversion efficiencies. In this study, experimental comparison of a beta-type Stirling engine for two different rhombic-drive mechanisms was presented. In one of the rhombic mechanisms, spur gears were used and the gear shaft was supported in bearings from one side. In the other mechanism, two helical gears were placed on crankshafts and the crankshafts were supported in bearings from both sides. Rhombus lengths of the mechanisms were determined as 66 mm and 80 mm to provide same constant compression ratio of 2.5 for both configurations. Both mechanisms were used in the same beta-type Stirling engine having same cylinder, piston and displacer dimensions. Performance parameters of the engines were evaluated at different helium charge pressures (2–4 bar) and hot-end temperatures (400–600°C). The hot-end of the displacer cylinder was heated by a liquefied petroleum gas (LPG) burner. The engine power increased by 132%, friction losses and gear noses were reduced by supporting the rhombic-drive mechanism from both side and using helical gears. The maximum output torque and power of the engine were obtained as 13.14 Nm at 428 rpm engine speed and 663 W at 800 rpm engine speed, respectively, at 600°C hot-end temperature and 4 bar charge pressure.  相似文献   

6.
In this paper, the power output of the cycle is taken as objective for performance optimization of an irreversible regenerated closed Brayton cycle coupled to constant-temperature thermal energy reservoirs in the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power output and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, and the pressure drop loss in the piping. The maximum power output optimization is performed by searching the optimum heat conductance distribution corresponding to the optimum power output among the hot- and cold-side heat exchangers and the regenerator for the fixed total heat exchanger inventory. The influence of some design parameters, including the temperature ratio of the heat reservoirs, the total heat exchanger inventory, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance distribution and the maximum power output are provided. The power plant design with optimization leads to smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers and the regenerator.  相似文献   

7.
In the current investigation, raw biogas obtained from rural sectors was used as the alternative to gasoline fuel in the spark ignition (SI) engine. The performance and efficiency are mainly dependent on the combustion phasing for which “ignition timing” is an effective tool in a SI engine. Hence, the objective of the present work is to understand the effect of “variable ignition timing” for a biogas-fueled SI engine. For this purpose, a single cylinder, 4-stroke, SI engine of rated power 4.5 kW was operated with raw biogas at a compression ratio (CR) of 10. By maintaining a speed of 1650 rpm, the engine was operated in wide open (WOT) and part throttle (PT) mode with an equivalence ratio of 0.81 and 0.83, respectively. It was observed that the biogas fueled SI engine was found to be operative only within the ignition advance (IA) range of 33–47° CA bTDC both in WOT and PT conditions. The results showed optimal brake power (BP), brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) are achieved at 45° CA bTDC. The average peak cylinder pressure, neat heat release rate (NHRR) and mean gas temperature (MGT) are also observed to be maximum while CO and HC emission at this point of IA were found to be minimum. Due to controlled and complete combustion, CO2 and NOx concentration in the exhaust emission were found to be higher at this point of ignition timing.  相似文献   

8.
ABSTRACT

The limitation of self-excited induction generator (SEIG) when used in the stand-alone wind energy system (WES) is poor voltage regulation at variable speed. The indirect vector control (IVC) technique is employed for both the generator-side converter (GSC) and load-side converter (LSC) to regulate the variation of SEIG speed, DC link voltage, and electromagnetic torque independently. Further performance of the proposed IVC technique has been analyzed independently with neural network controller (NNC) and fuzzy logic controller (FLC) as its components. The FLC is replaced by an NNC to improve the performance of the proposed system. IVC of SEIG-based WES has been simulated in MATLAB/SIMULINK software, and the prototype model of the proposed WES is developed to experimentally validate the performance using dSPACE DS-1104 R&D controller board.  相似文献   

9.
An attempt has been made to produce stable water–diesel emulsion with optimal formulation and process parameters and to evaluate the performance and emission characteristics of diesel engine using this stable water–diesel emulsion. A total of 54 samples were prepared with varying water/diesel ratio, surfactant amount and stirring speed and water separation was recorded after 24 and 48 hr of emulsification. The recorded data were used in artificial neural network (ANN)-particle swarm optimization (PSO) technique to find the optimal parameters to produce water–diesel emulsion for engine testing. The predicted optimal parameters were found as 20% water to diesel ratio, 0.9% surfactant and 2200 rpm of stirrer for a water separation of 14.33% in one day with a variation of 6.54% against the actual value of water separation. Water–diesel emulsion fuel exhibited similar fuel properties as base fuel. The peak cylinder gas pressure, peak pressure rise rate and peak heat release rate for water–diesel were found higher as compared to diesel at medium to full engine loads. The improved air-fuel mixing in water–diesel emulsion enhanced brake thermal efficiency (BTE) of engine. The absorption of heat by water droplets present in water–diesel emulsion led to reduced exhaust gas temperature (EGT). With water–diesel emulsion fuel, the mean carbon monoxide (CO), unburned hydrocarbon and oxides of nitrogen (NOx) emissions reduced by 8.80, 39.60, and 26.11%, respectively as compared to diesel.  相似文献   

10.
ABSTRACT

First and second law approaches have been used to analyze the performance of a humidified Brayton/Brayton power cycle. The energy efficiency and exergy destruction rates consistently improved when the combustion temperature was increased. Both performance indicators improved, reached an optimum, and then deteriorated when the topping cycle pressure ratio increased, while their sensitivity to the bottoming cycle pressure ratio depended on the humidification rate used at the bottoming cycle. Upon increasing the mass flowrate of air through the bottoming cycle, the energy efficiency of the power cycle increased linearly, while the irreversibility generation had a non-monotonic variation. In all cases, a higher degree of humidification always resulted in greater first and second law performances.  相似文献   

11.
The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m3, treated 0.65 m3 sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45°-inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible.  相似文献   

12.
The effect of heat resistance and heat leakage on the optimal performance of finite time heat engines is investigated in this paperbased on a generalized heat transfer law q ∞ Δ(Tn). The analytical relation between optimal power output and efficiency for steady-state flow irreversible heat engines is derived. The analysis includes the optimal performance characteristics of several types of heat engines with different loss item and different heat transfer laws. A numerical example is provided for illustrating the power output versus efficiency characteristics. Results shown that the heat transfer law does affect the performance of these heat engines.  相似文献   

13.
The two-stage thermoelectric couple (TE couple) and the multilayer TE couple are proposed and their output performance is compared with the conventional TE couple in this paper. Three dimensional (3-D) numerical and finite element models are established for these three types of TE couples which are analyzed in the ANSYS Workbench environment. Simulation results show that the output voltage and the current of the two newly designed TE couples increase in a certain extent than those of the conventional device before the load resistance reaches a critical value, however, the multilayer TE couple has the best performance. Similar conclusions can be drawn from the results of comparisons with the maximum output power and the maximum heat conversion efficiency between different types of TE couples. When thicknesses of the intermediate ceramic substrate and the intermediate copper conductor change, the output performance of the two newly-designed types of TE couples can be improved further. The maximum output power and the maximum heat conversion efficiency of the multilayer TE couple increase by 71.15% and 14.87%, respectively, when compared with those for the conventional device under certain conditions. Therefore, the multilayer TE couple has the potential to be one of the future development directions of TE couple structures.  相似文献   

14.
This paper presents the performance of the solid-oxide fuel cell/gas turbine hybrid power generation system with heat recovery waste unit based on the energy and exergy analyses. The effect of air inlet temperature and air/fuel ratio on exergy destruction and network output is determined. For the numerical calculations, air inlet temperature and air fuel ratio are increased from 273 to 373 K and from 40 to 60, respectively. The results of the numerical calculations bring out that total exergy destruction quantity increases with the increase of air inlet temperature and air/fuel ratio. Furthermore, the maximum system overall first and second law efficiencies are obtained in the cases of air inlet temperature and air/fuel ratio equal to 273 K and 60, respectively, and these values are 62.09% and 54.91%.  相似文献   

15.
A double-acting traveling-wave thermoacoustic engine with liquid-water piston (DTTELP) was proposed by the authors. This article conducted numerical simulation on its performance for the cases of with and without acoustical loads. The effects of mean working pressure and water-piston mass on its non-load performance were firstly discussed. Then, the output performance of this novel thermoacoustic engine under fixed heating temperature was analyzed. Also, influences of different heating temperatures on the performance of this engine were discussed. According to the simulation, the novel double-acting thermoacoustic heat engine (TTHE) is very efficient and a maximum thermal efficiency can reach about 51% when the heating temperature is 1500 K.  相似文献   

16.
Waste cooking oil (WCO) was experimentally examined to determine whether it can be used as an alternative fuel in a 3-cylinder, 4-stroke, direct injection, 48 kW power tractor engine. The test engine was operated under full load conditions using diesel fuel and waste vegetable oil from the 2400 to 1100 rpm and performance values were recorded. Tests were performed in two stages to evaluate the effect of the waste oils on the engine life cycle. When the test engine was operated with diesel fuel and waste cooking oil; engine torque decreased between at ratio of 0.09 % and 3% according to the engine speed. While no significant difference occurs in the diesel fuel tests at the end of 100 hours of operation, an important reduction was observed in the engine torque of the WCO engine between 4.21% and 14.48% according to the engine speed, and an increase in average smoke opacity ratio was also observed. In accordance with the results obtained from the studies, it was determined that the engine performance values of waste cooking oil show similar properties with diesel fuel, but in long-term usage, performance losses increased. In the SEM analysis performed on the fuel system, there were dark deposits at the nozzle tip and stem. According to an EDX analysis at the nozzle tips, the detected elements point to engine oil ash in the combustion chamber and show coking products (C and O). The other elements (Na, S, Ca, P, Cl, and K) point to used WCO.  相似文献   

17.
In this study, an experimental investigation on the performance of a small-scale residential-size solar-driven adsorption (silica gel-water) cooling system that was constructed at Assiut University campus, Egypt is carried out. As Assiut area is considered as hot, arid climate, field tests for performance assessment of the system operation during the summer season are performed under different environmental operating conditions. The system consists of an evacuated tube with a reflective concentration parabolic surface solar-collector field with a total area of 36 m2, a silica gel-water adsorption chiller of 8 kW nominal cooling capacity, and hot and cold water thermal storage tanks of 1.8 and 1.2 m3 in volume, respectively. The results of summer season field test show that under daily solar insolation varying from 21 to 27 MJ/m2, the solar collectors employed in the system had high and almost constant thermal efficiency. The daily solar-collector efficiency during the period of system operation ranged from about 50% to 78%. The adsorption chiller performance shows that the chiller average daily coefficient of performance (COP) was 0.41 with the average cooling capacity of 4.4 kW when the cooling-water and chilled-water temperatures were about 31°C and 19°C, respectively. As the chiller cooling water is cooled by the cooling tower in the hot arid area, the cooling water is at a higher temperature than the design point of the chiller. Therefore, an experiment was carried out using the city water for cooling. The results show that an enhancement in the chiller COP by 40% and the chilling power by 17% has been achieved when the city water was 27.7°C.  相似文献   

18.
This work proposes nonlinear estimators with nonlinear controllers, for variable speed wind turbine (VSWT) considering that either the wind speed measurement is not available or not accurate. The main objective of this work is to maximize the energy capture from the wind and minimizes the transient load on the drive train. Controllers are designed to adjust the generated torque for maximum power output. Estimation of effective wind speed is required to achieve the above objectives. In this work the estimation of effective wind speed is done by using the Modified Newton Rapshon (MNR), Neural Network (NN) trained by different training algorithms and nonlinear time series based estimation. Initially the control strategies applied was the classical ATF (Aerodynamic torque feed forward) and ISC (Indirect speed control), however due their weak performance and unmodeled WT disturbances, nonlinear static and dynamic feedback linearization techniques with the above wind speed estimators are proposed.  相似文献   

19.
Biofuel blends produced from Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) oil were evaluated for their combustion properties. Two kinds of blends (regular diesel with Jatropha and Karanja oil) were prepared at 20% volume to the diesel and tested as alternative fuels in single cylinder (vertical), water-cooled, direct injection diesel engine at the rated speed of 1500 rpm. The performance of the engine in terms of thermal efficiency at full load for diesel was 30%. For Jatropha and Karanja biodiesel blends, the thermal efficiencies were 29.0% and 28.6%, respectively. The maximum cylinder pressure and ignition delay for biodiesel fuel blends are very close to that of regular diesel. Prolonged combustion was observed for Karanja oil blend in comparison to Jatropha oil blend. The combustion pattern also reveals the slow burning characteristics of vegetable oils and this study indicates that the blended biofuels have combustion characteristics that are similar to regular diesel fuels.  相似文献   

20.
In this paper, an isolated ac module with pseudo dc-link and galvanic isolation is proposed for photovoltaic energy conversion. The studied grid-tie ac module can individually extract the maximum solar power from each photovoltaic panel and transfer to ac utility system. It consists of an interleaved active-clamping single-ended primary-inductive circuit (SEPIC) with a secondary voltage doubler, a full-bridge polarity selector operating under line frequency to achieve high efficiency. For the studied topology, key features such as reduced input current ripple, zero-voltage switching (ZVS) of primary switches, low reverse-recovery current of the output diodes, and lower switch voltage stress are obtained. Also, to reduce input current ripple, an interleaved control strategy is adopted. A simple control strategy is proposed to generate a rectified sinusoidal waveform voltage at the pseudo dc-link capacitors and achieve the high maximum power point tracking (MPPT) accuracy. The operation principles and design considerations of the studied ac module are analyzed and discussed. A prototype with 25–60 V dc input, 110 V/60 Hz ac output and 150 W power rating has been constructed for verifying the feasibility of the proposed ac module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号