首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims at analyzing the feasibility of a waste heat recovery power generation plant based on parametric optimization and performance analysis using different organic Rankine cycle configurations and heat source temperature conditions with working fluid R-12, R-123, R-134a, and R-717. A parametric optimization of turbine inlet temperature(TIT) was performed to obtain the irreversibility rate, system efficiency, availability ratio, turbine work output, system mass flow rate, second-law efficiency, and turbine outlet quality, along the saturated vapor line and also on superheating at an inlet pressure of 2.50 MP in basic as well as regenerative organic Rankine cycle. The calculated results reveal that selection of a basic organic Rankine cycle using R-123 as working fluid gives the maximum system efficiency, turbine work output, second-law efficiency, availability ratio with minimum system irreversibility rate and system mass flow rate up to a TIT of 150°C and appears to be a choice system for generation of power by utilizing the flue gas waste heat of thermal power plants and above 150°C the regenerative superheat organic Rankine cycle configuration using R 123 as working fluid gives the same results.  相似文献   

2.
This paper outlines a complete review on modifications made on the absorber plate of solar air heaters in order to improve the turbulence and heat transfer rate, thereby efficiency. Corrugated sheets, fins, extended surfaces, wire mesh, porous medium, etc., are a few of the modifications used. Most of such alterations in the absorber plate resulted with an increase in efficiency but associated with drawback of increased pumping power due to raising friction factor. Pumping power is considered here as a predominant comparison parameters of various solar air heaters with different absorber plate in terms of effective efficiency.  相似文献   

3.
In this work, the performance of a forced convection solar air heater was evaluated using using three packed bed absorber plate configurations and compared with flat absorber plate. The phase change material (paraffin wax) was packed in the pin-fin, trianglular and circular absorber plate configurations. The performance parameters such as, outlet air temperature, thermo-hydraulic efficiency, exergy efficiency and pressure drop were predicted and compared. The results showed that the packed bed absorber plate configurations using paraffin wax have higher outler air temperature in the range of 2–5°C with 3–40% higher thermo-hydraulic efficiency and 2–20% higher exergy efficiency when compared to flat absorber plate. However, the packed bed absorver plates have higher pressure drop when compared to flat absorber plate.  相似文献   

4.
The effect of using ground tire rubber (GTR) as an adsorptive material in the removal of a 2:1:1 weight mixture of n-butyl acetate, toluene and m-xylene by using a peat biofilter under different intermittent conditions was investigated. The performance of two identical size biofilters, one packed with fibrous peat alone and the other with a 3:1 (vol) fibrous peat and GTR mixture, was examined for a period of four months. Partition coefficients of both materials were measured. Values of 53, 118 and 402 L kg(-1) were determined for n-butyl acetate, toluene and m-xylene in peat, respectively; and values of 40, 609 and 3035 L kg(-1) were measured for the same compounds in GTR. Intermittent load feeding of 16 h per day, 5 days per week working at an EBRT of 60 s and an inlet VOC concentration of 0.3 g C m(-1), resulted in removal efficiencies higher than 90% for both biofilters, indicating that the addition of GTR did not adversely affect the behavior of the bioreactor. Full removal of n-butyl acetate was obtained for both biofilters. GTR improved the removal of the aromatics in the first part of the biofilter, facilitating lower penetration of the toluene and m-xylene into the bed. A 31-day starvation period was applied and intermittent operation subsequently restarted. In both biofilters, high removal efficiencies after a re-acclimation period of two days were achieved. A shock loading test related to 1-h peaks of three- and four-fold increases in its baseline concentration (0.30 g C m(-3)) was applied in both biofilters. For the biofilter packed with the peat and GTR mixture, attenuation greater than 60% was observed in the maximum outlet concentration when compared to the biofilter packed with peat alone.  相似文献   

5.
This paper describes a methodology used for designing louvered fins. Louvered fins are commonly used in many compact heat exchangers to increase the surface area and initiate new boundary layer growth. Detailed measurements can be accomplished with computational models of these louvered fins to gain a better understanding of the flow field and heat distribution. The particular louver geometry studies for this work have a louver angle of 23° and fin count of 17 fpi.

The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with louvered fins are analyzed numerically. A three-dimensional model is developed to investigate flow and conjugate heat transfer in the copper-based car radiator. The model was produced with the commercial program FLUENT. The theoretical model has been developed and validated by comparing the predictions of the model with available experimental data. The thermal performance and temperature distribution for the louvered fins were analyzed and a procedure for optimizing the geometrical design parameter is presented.

One fin specification among the various flat tube exchangers is recommended by first considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected radiator are investigated also. The results will be used as fundamental data for tube design by suggesting specifications for car radiator tubes.  相似文献   

6.
The suitable design is the most important key to a cost-effective solar air heater. Although there are many techniques that have been proposed to improve the solar air heaters’ performance by means of different turbulence promoters, they cannot ensure a compromise between the cost and the effectiveness. The aim of this study is to find simple and tolerable solution to get rid of the inconvenience resulting from the widely adopted heat-transfer-enhancement techniques by providing an optimized solar air heater design. The proposed design consists of a slightly curved smooth flow channel with an absorber plate of convex shape. A prototype of a curved solar air heater of 1.28 m2 collector area was built and tested under summer outdoor conditions in Biskra (Algeria). The performance was evaluated in terms of thermal and effective efficiency for mass flow rates of 0.0172, 0.029, and 0.0472 kg/sm2. It is observed that the overall efficiency of this solar air heater is considerably higher in comparison with the efficiency range of the conventional smooth flat plate heaters reported in the literature for similar operating conditions.  相似文献   

7.
Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.  相似文献   

8.
A passive flat-plate solar air collector was constructed in the laboratory of New and Renewable Energy in Arid Zones, Ouargla University, South East Algeria. The absorber of the passive flat-plate solar air collector was laminated with a thin layer of local sand. This acted as a thermal packed bed with a collecting area of 0.5 m2 (1 m × 0.5 m). Three series of experiments were performed. The first consisted of choosing the best sand brought from three different places of the Algerian desert. The second consisted of studying the effect of the thickness of the sand layer on the daily efficacy of the collector. The influence of the sand diameter was investigated in the third series. The experimental results showed that: All collectors covered with sand had higher efficiency than those without. It was noticed that, for a fixed mass of sand (given thickness of the sand layer), the improvement of the collector was inversely proportional to the sand particle diameters. The maximum efficiency approximates 62.1% for a particle diameter 0.063 mm, compared to 41.71% for a diameter 0.250 mm.The efficiency of the collector for a fixed particle diameter increases with the increase in the thickness of the sand layer. The collector with thickness sand layer 0.84 mm gave the best efficiency of 46.14% compared to 27.8% for 0.28 mm of thickness sand layer.  相似文献   

9.
Solar drying technology is a noteworthy technique as it uses the renewable solar energy. In this study, thin slices of banana were dried by using an indirect forced solar dryer at air mass flow rates of 0.016, 0.041, and 0.082 kg s?1. In order to assess the kinetics of shrinkage and color changes, image processing technique was applied for determining area, volume, density, total color difference and browning index. Shrinkage factor of the samples was less than 1 during drying indicating non-isotropic shrinkage with contraction of inner voids. Furthermore, product shrinkage showed two descending drying steps in which the volume change was more than the evaporated water volume in the first step and equal to that in the second step. The dimensionless evaporated water volume with respect to the dimensionless volume difference of the product also revealed that two steps of volume change existed during drying separated at critical moisture ratio 0.23. The area and volume changes were only related to the product moisture content and were independent of the air mass flow rate, and hence air temperature. In contrary to the browning index, the total color difference was not influenced by air mass flow rate and the least change in browning index occurred at mass flow rate of 0.041 kg s?1.  相似文献   

10.
The study of the heat transfer enhancement for the recycling double-pass V-corrugated solar air heaters, which implement the external recycle of flowing air, was investigated experimentally and theoretically. The comparison among different designs of V-corrugated, baffled and fins attached, and flat-plate collectors was made to show the device performance improvement with various operating parameters under the same working dimensions. The recycling double-pass V-corrugated device developed here was proposed in aiming to strengthen the convective heat-transfer coefficient and enlarge the heat transfer area. The error analysis of experimental results deviate by 0.85–2.46% from the theoretical predictions with the fairly good agreement, and both results show that the device performance of the recycling double-pass V-corrugated operation is better than those of the other configurations under various recycle ratios and mass flow rates. The suitable selections were obtained for operating recycling double-pass V-corrugated devices while considering with an economic viewpoint by both the collector efficiency enhancement and the power consumption increment.  相似文献   

11.
ABSTRACT

Thermal potential for cooling and heating can be achieved by new configuration of earth–air heat exchanger (EAHE). This paper presents a numerical investigation of thermal performance of a spiral-shaped configuration of EAHE intended for the summer cooling in hot and arid regions of Algeria. A commercial finite volume software (ANSYS FLUENT) has been used to carry out the transient three-dimensional simulations and the obtained results have been validated using the experimental and numerical data obtained from the literature. The agreement between our simulation results and those from literature is very satisfactory. A parametric analysis of the new geometry of (EAHE) has been performed to investigate the effect of pitch, depth, pipe length and of the flow velocity on the outlet air temperature and the EAHE’s mean efficiency as well as its coefficient of performance (COP). It has been shown that when the pitch space varies between 0.2 and 2 m the difference of outlet air temperature increases by 6 °C. When the air velocity increases from 2 to 5 m/s the mean efficiency decreases from 60 % to 33 % and the COP of the EAHE decreases from 2.84 to 0.46.  相似文献   

12.
The device performance of double-pass V-corrugated solar air heaters with external recycle was investigated experimentally and theoretically. The comparison between V-corrugated and flat-plate collectors was made to show the thermal efficiency improvement with various operating parameters. The results show that the collector efficiency improvement of the recycling double-pass V-corrugated operation is much higher than those of the other configurations under various recycle ratios and mass flow rates. However, there exists the penalty on the power consumption increment due to implementing V-corrugated channel into the solar air heaters, an economic consideration on both the heat-transfer efficiency enhancement and power consumption increment for the double-pass V-corrugated device was also delineated. The experimental setup was carried out to validate the theoretical predictions, and the fairly good agreement between both results was achieved with the error analysis of 0.48-1.83%.  相似文献   

13.
Due to its simplicity and accurately measuring the flow rate, the venturi system is a special kind of pipe that is widely used in various applied fluid mixtures. One of the venturi system's important applications is ejectors devices that accurately facilitate adding air to water to sustain oxygen demand target levels in many waterworks engineering systems. This study aims to improve venturi system measurement accuracy through experimental investigation and analytical analysis for the venturi system conditional configuration parameters effect on target aeration operational efficiency. In the experiment work, different runs are implemented to characterize the performance of such aerators by describing the impact of venturi characteristics and configurations, including water flow rate, air inlets orifices diameters, inlet velocities, throat lengths, inlet angles, outlets angles, and outlet diameters on aeration efficiency. Results show that the venturi air vent diameter is an important governing parameter for determining aeration performance value. Additionally, an indicated increase in aeration performance with an increasing throat length to its diameter ratio. Meanwhile, the results revealed a varying noted effect of the venturi system characteristics and configurations on aeration performance. Moreover, the equations that relate venturi system configuration and Reynolds numbers with the aeration operational performance are developed to facilitate the target accurate aeration efficiency estimation.  相似文献   

14.
In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiber-based core utilizes 12 bundles aligned vertically, each with 1,000 packed polypropylene hollow fibers. The proposed core was developed and tested under various operating and ambient conditions as a cooling core for a compact evaporative cooling unit and a dehumidification core for a liquid desiccant dehumidification unit. As a cooling core, the fiber-based evaporative cooler provides a maximum cooling capacity of 502 W with a wet bulb effectiveness of 85%. As a dehumidification core and employing potassium formate as a liquid desiccant, the dehumidifier is capable of reducing the air relative humidity by 17% with an overall dehumidification capacity of 733 W and humidity effectiveness of 47%. Being cheap and simple to design with their attractive heat and mass transfer characteristics and the corresponding large surface area-to-volume ratio, hollow fiber membrane contactors provide a promising alternative for cooling and dehumidification applications.  相似文献   

15.
ABSTRACT: Flow rates, pH, iron concentration, and manganese concentration were measured during several storm events at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. Although rainfall and outlet iron concentration were not significant correlates at the larger wetland, flow rate was positively correlated to outlet iron concentration. A normal manganese treatment efficiency of 50 percent at the smaller wetland was reduced to zero during a heavy rain.  相似文献   

16.
Continuous flow transesterification of waste frying oil (WFO) with methanol for the biodiesel production was tested in a laboratory scale jacketed reactive distillation (RD) unit packed with clam shell based CaO as solid catalyst. The physiochemical properties of the clam shell catalysts were characterized by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive Atomic X-ray Spectrometry (EDAX). The effects of the reactant flow rate, methanol-to-oil ratio, and catalyst bed height were studied to obtain the maximum methyl ester conversion. Reboiler temperature of 65°C was maintained throughout the process for product purification and the system reached the steady state at 7 hr. The experimental results revealed that the jacketed RD system packed with clam shell based CaO showed high catalytic activity for continuous production of biodiesel and a maximum methyl ester conversion of 94.41% was obtained at a reactant flow rate of 0.2 mL/min, methanol/oil ratio of 6:1, and catalyst bed height of 180 mm.  相似文献   

17.
In this research, desert sand is used as the sensible heat storage medium, which exchanges heat with air in the downcomer to realize heat storage and heat release. The desert sand distribution uniformity has a significant impact on the heat exchange performance and efficiency between desert sand and air for the process of convection in the downcomer. Given the superiority of sensible heat storage in convective heat transfer between desert sand and air, distributors with cylinder or conical bore solid particles and homogeneity performance testing device are designed and manufactured on the basis of convection system equipped with solid particle–air downcomer. Then, the convection experiment between solid sand and air is researched. The greater the desert sand flow rate and higher the volume density, the larger the variance of regional mass flow rate and the worse the homogeneity performance. For the cylinder bore distributor, the smaller the sand particle size is, the greater affected the sand groups can be. The sand homogeneity performance is preferable with the two particle size ranges: 0.18-0.25 mm and 0.15-0.18 mm. The total sand flow rate decreases, but the uniformity improves with the increase of the air flow velocity, and the best distribution performance is achieved at an air velocity of 0.6 m/s. However, the distribution performance declines with the air flow velocity persistently increasing because the sand groups are pushed to one pipe side close to the wall. The sand groups deflect seriously with the air flow velocity increasing.  相似文献   

18.
Many source and transport factors control P loss from agricultural landscapes; however, little information is available on how these factors are linked at a watershed scale. Thus, we investigated mechanisms controlling P release from soil and stream sediments in relation to storm and baseflow P concentrations at four flumes and in the channel of an agricultural watershed. Baseflow dissolved reactive phosphorus (DRP) concentrations were greater at the watershed outflow (Flume 1; 0.042 mg L(-1)) than uppermost flume (Flume 4; 0.028 mg L(-1)). Conversely, DRP concentrations were greater at Flume 4 (0.304 mg L(-1)) than Flume 1 (0.128 mg L(-1)) during stormflow. Similar trends in total phosphorus (TP) concentration were also observed. During stormflow, stream P concentrations are controlled by overland flow-generated erosion from areas of the watershed coincident with high soil P. In-channel decreases in P concentration during stormflow were attributed to sediment deposition, resorption of P, and dilution. The increase in baseflow P concentrations downstream was controlled by channel sediments. Phosphorus sorption maximum of Flume 4 sediment (532 mg kg(-1)) was greater than at the outlet Flume 1 (227 mg kg(-1)). Indeed, the decrease in P desorption between Flumes 1 and 4 sediment (0.046 to 0.025 mg L(-1)) was similar to the difference in baseflow DRP between Flumes 1 and 4 (0.042 to 0.028 mg L(-1)). This study shows that erosion, soil P concentration, and channel sediment P sorption properties influence streamflow DRP and TP. A better understanding of the spatial and temporal distribution of these processes and their connectivity over the landscape will aid targeting remedial practices.  相似文献   

19.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

20.
Carbon dioxide absorption using amine based solvents is a well-known approach for carbon dioxide removal. Especially with the increasing concerns about greenhouse gas emissions, there is a need for an optimization approach capable of multifactor calibration and prediction of interactions. Since conventional methods based on empirical relations are not efficiently applicable, this study investigates use of Response Surface Methodology as a strong optimization tool. A bubble column reactor was used and the effect of solvent concentration (10.0, 20.0 and 30.0 vol%), flow rate (4.0, 5.0 and 6.0 L min−1), diffuser pore size (0.5, 1.0 and 1.5 mm) and temperature (20.0, 25.0 and 30.0°C) on the absorption capacity and also overall mass transfer coefficient was evaluated. The optimization results for maintaining maximum capacity and overall mass transfer coefficient revealed that different optimization targets led to different tuned operational factors. Overall mass transfer coefficient decreased to 34.7 min−1 when the maximum capacity was the desired target. High reaction rate along with the highest absorption capacity was set as desirable two factor target in this application. As a result, a third scenario was designed to maximize both mass transfer coefficient and absorption capacity simultaneously. The optimized condition was achieved when a gas flow rate of 5.9 L min−1, MEA solution of 29.6 vol%, diffuser pore size of 0.5 mm and temperature of 20.6°C was adjusted. At this condition, mass transfer coefficient reached a maximum of 38.4 min−1, with a forecasted achievable absorption capacity of 120.5 g CO2 per kg MEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号