首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Objective: To meet increasing customer demand, many vehicle manufacturers are now offering a panoramic sunroof option in their vehicle lineup. Currently, there is no regulatory or consumer test aimed at assessing the potential for ejection mitigation of roof glazing, which leaves manufacturers to develop internal performance standards to guide designs. The goal of this study was to characterize the variety of occupant-to-roof impacts involving unbelted occupants in rollover crashes to determine the ranges of possible effective masses and impact velocities. This information can be used to define occupant retention requirements and performance criteria for roof glazing in occupant ejection protection.

Methods: This study combined computational (MADYMO and LS-Dyna) simulations of occupant kinematics in rollover crashes with laboratory rollover crash tests using the dynamic rollover test system (DRoTS) and linked them through controlled anthropomorphic test device (ATD)-to-roof (“drop”) impact tests. The DRoTS and the ATD drop tests were performed to explore impact scenarios and estimate dummy-to-roof impact impulses. Next, 13 sets of vehicle kinematics and deformation data were extracted from a combination of vehicle dynamics and finite element model simulations that reconstructed variations of rollover crash cases from the field data. Then occupant kinematics data were extracted from a full-factorial sensitivity study that used MADYMO simulations to investigate how changes in anthropometry and seating position would affect occupant–roof impacts across all 13 cases. Finite element (FE) simulations of ATD and Global Human Body Models Consortium (GHBMC) human body model (HBM) roof impacts were performed to investigate the most severe cases from the MADYMO simulations to generate a distribution of head-to-roof impact energies.

Results: From the multiparameter design of experiment and experimental study, kinematics and energy output were extracted and analyzed. Based on dummy-to-roof impact force and dummy-to-roof impact velocity, the most severe rollover scenarios were identified. In the DRoTS experiments followed by the drop tests, the range of identified impact velocities was between 2 and 5.8 m/s. However, computational simulations of the rollover crashes showed higher impact velocities and similar effective masses. The largest dummy-to-roof impact velocity was 11 m/s.

Conclusions: This study combined computational and experimental analyses to determine a range of possible unbelted occupant-to-roof impact energies. These results can be used to determine design parameters for an impactor for the assessment of the risk of roof glazing ejection for unbelted occupants in rollover crashes.  相似文献   

2.
Objective: We investigate the use of the Functional Capacity Index (FCI) as a tool for establishing vehicle safety priorities by comparing the life year burden of injuries to the burden of fatality in frontal and side automotive crashes. We demonstrate FCI’s utility by investigating in detail the resulting disabling injuries and their life year costs.

Methods: We selected occupants in the 2000–2013 NASS-CDS database involved in frontal and side crashes, merged their injuries with FCI, and then used the merged data to estimate each occupant’s overall functional loss. Lifetime functional loss was assessed by combining this measure of impairment with the occupants’ expected future life spans, estimated from the Social Security Administration’s Actuarial Life Table.

Results: Frontal crashes produce a large number of disabling injuries, particularly to the lower extremities. In our population, these crashes are estimated to account for approximately 400,000 life years lost to disability in comparison with 500,000 life years lost to fatality. Victims of side crashes experienced a higher rate of fatality but a significantly lower rate of disabling injury (0.3 vs. 1.0%), resulting in approximately 370,000 life years lost to fatality versus 50,000 life years lost to disability.

Conclusions: The burden of disabling injuries to car crash survivors should be considered when setting vehicle safety design priorities. In frontal crashes this burden in life years is similar to the burden attributable to fatality.  相似文献   

3.
Objective: The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012–2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test.

Methods: NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test.

Results: Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted.

Conclusion: Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.  相似文献   

4.
Objective: To determine whether varying the seat belt load limiter (SBL) according to crash and occupant characteristics could have real-world injury reduction benefits in frontal impacts and, if so, to quantify those benefits.

Methods: Real-world UK accident data were used to identify the target population of vehicle occupants and frontal crash scenarios where improved chest protection could be most beneficial. Generic baseline driver and front passenger numerical models using a 50th percentile dummy were developed with MADYMO software. Simulations were performed where the load limiter threshold was varied in selected frontal impact scenarios. For each SBL setting, restraint performance, dummy kinematics, and injury outcome were studied in 5 different frontal impact types. Thoracic injury predictions were converted into injury probability values using Abbreviated Injury Scale (AIS) 2+ age-dependent thoracic risk curves developed and validated based on a methodology proposed by Laituri et al. (2005). Real-world benefit was quantified using the predicted AIS 2+ risk and assuming that an appropriate adaptive system was fitted to all the cars in a real-world sample of recent frontal crashes involving European passenger cars.

Results: From the accident data sample the chest was the most frequently injured body region at an AIS 2+ level in frontal impacts (7% of front seat occupants). The proportion of older vehicle front seat occupants (>64 years) with AIS 2+ injury was also greater than the proportion of younger occupants. Additionally, older occupants were more likely to sustain seat belt–induced serious chest injury in low- and moderate-speed frontal crashes. In both front seating positions, the low SBL provided the best chest injury protection, without increasing the risk to other body regions. In severe impacts, the low SBL allowed the driver to move dangerously close to the steering wheel. Compared to the driver side, greater ride-down space on the passenger side gave a higher potential for using the low SBLs. When applying the AIS 2+ risk reduction findings to the weighted accident data sample, the risk of sustaining an AIS 2+ seat belt injury changed to 0.9, 4.9, and 8.1% for young, mid, and older occupants, respectively, from their actual injury risk of 1.3, 7.6, and 13.1%.

Conclusions: These results suggest the potential for improving the safety of older occupants with the development of smarter restraint systems. This is an important finding because the number of older users is expected to increase rapidly over the next 20 years. The greatest benefits were seen at lower crash severities. This is also important because most real-world crashes occur at lower speeds.  相似文献   

5.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   

6.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

7.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

8.
OBJECTIVE: Validated injury criteria are essential when developing restraints for AIS 1 neck injuries, which should protect occupants in a variety of crash situations. Such criteria have been proposed and attempts have been made to validate or disprove these. However, no criterion has yet been fully validated. The objective of this study is to evaluate the influence of seat geometry and seating posture on the NIC(max) long-term AIS 1 neck injury predictability by making parameter analyses on reconstructed real-life rear-end crashes with known injury outcomes. METHODS: Mathematical models of the BioRID II and three car seats were used to reconstruct 79 rear-end crashes involving 110 occupants with known injury outcomes. Correlations between the NIC(max) values and the duration of AIS 1 neck injuries were evaluated for variations in seat geometry and seating posture. Sensitivities, specificities, positive predictive values, and negative predictive values were also calculated to evaluate the NIC(max) predictability. RESULTS: Correlations between the NIC(max) values and the duration of AIS 1 neck injuries were found and these relations were used to establish injury risk curves for variations in seat geometry and seating posture. Sensitivities, specificities, positive predictive values, and negative predictive values showed that the NIC(max) predicts long-term AIS 1 neck injuries also for variations in seat geometry and seating postures. CONCLUSION: The NIC(max) can be used to predict long-term AIS 1 neck injuries.  相似文献   

9.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   

10.
Objective: The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set.

Method: Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes―a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured).

Results: IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18–64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes.

Conclusions: The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.  相似文献   


11.
《Safety Science》2006,44(2):87-109
The risk for injuries in rollover coach crashes are dependent on whether the occupants are belted or not. However, the influence of the different belt systems for reducing injuries has remained unclear. Since many injuries sustained are caused by impacts with the interior, passenger interactions or ejection through a window, the advantages by proper seat belt systems are evident. In this study, representing the most common serious crash scenario for serious injury, 128 injured in rollover cases were analysed with regard to the injury outcome, mechanisms and the possible injury reduction for occupants when using a safety belt. Furthermore, the different belt systems were compared to explain their contribution to increased safety. Based on medical reports and questioning of the passengers, the injuries sustained are recorded according to the AIS classification. The next step was the identification of the injury mechanisms, using the passenger statements as well as results from numerical occupant simulations. It is important to mention that this study was purely focused on detection of the injury mechanism to avoid the reported injuries. The possibility of additional injuries due to the wearing of a belt were not taken into account. However, the analysis of the 128 injured showed a considerable increase in safety for belted occupants through limiting interior contacts, minimising passenger interaction and reducing the possibility of ejection.  相似文献   

12.
13.
14.
Objective: The objectives of the present article were to (a) describe the main characteristics of bicycle crashes with regard to the road environment, crash opponent, cyclist, and crash dynamics; (b) compare individuals who describe their health after the crash as declined with those who describe their health as not affected; and (c) compare the number of injured cyclists who describe their health as declined after the crash with the predicted number of permanent medical impairments within the same population.

Methods: A sample of individuals with specific injury diagnoses was drawn from the Swedish Traffic Accident Data Acquisition (STRADA) database (n?=?2,678). A survey form was used to collect additional information about the crash and the health-related outcomes. The predicted number of impaired individuals was calculated by accumulating the risk for all individuals to sustain at least a 1% permanent medical impairment, based on the injured body region and injury severity.

Results: Nine hundred forty-seven individuals (36%) responded, of whom 44% reported declined health after the crash. The majority (68%) were injured in single bicycle crashes, 17% in collisions with motor vehicles, and 11% in collisions with another cyclist or pedestrian. Most single bicycle crashes related to loss of control (46%), mainly due to skidding on winter surface conditions (14%), followed by loss of control during braking (6%). There was no significant difference in crash distribution comparing all crashes with crashes among people with declined health. The predicted number of impaired individuals (n?=?427) corresponded well with the number of individuals self-reporting declined health (n?=?421).

Conclusions: The types of crashes leading to health loss do not substantially differ from those that do not result in health loss. Two thirds of injuries leading to health loss occur in single bicycle crashes. In addition to separating cyclists from motorized traffic, other preventive strategies are needed.  相似文献   

15.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   


16.
Objective: The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors.

Methods: Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively.

Results: There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted).

Conclusions: Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.  相似文献   

17.
Abstract

Objective: Left turn across path with traffic from the opposite direction (LTAP/OD) is the second most frequent car-to-car intersection crash type after straight crossing path (SCP) in Germany and the United States. Intersection automated emergency braking (AEB) for passenger cars can address these crashes.

This study investigates 2 implementation strategies of intersection AEB addressing LTAP/OD crashes: (1) only the turning car is equipped with an intersection AEB and (2) turning and straight-heading cars are equipped with an intersection AEB. For each strategy, the influence of a safety zone around the vehicles that should not be entered is evaluated in terms of accident avoidance, injury mitigation, and change in velocity (delta-V) of remaining accidents. Results are given as a function of market penetration.

Methods: A total of 372 LTAP/OD crashes from the time series precrash matrix (PCM), a subsample of the German In-Depth Accident Study (GIDAS), were resimulated in the PRediction of Accident Evolution by Diversification of Influence factors in COmputer simulation (PRAEDICO) simulation framework. A Kudlich-Slibar rigid-body impact model and an injury risk curve derived from GIDAS were used to predict remaining moderate to fatal (Maximum Abbreviated Injury Scale [MAIS] 2?+?F) injuries among car occupants.

Results: With a safety zone of 0.2 m, when the turning vehicle only was equipped with an intersection AEB, 59% of the crashes were avoided at a 100% market penetration. With both vehicles equipped the percentage increased to 77%. MAIS 2?+?F injured occupants were reduced by 60 and 76%, respectively. Considering both the turning and the straight-heading vehicles, the delta-V decreased strongly with market penetration in remaining left-side impacts but only slightly in remaining frontal and right-side impacts. Eliminating the safety zone substantially decreases effectiveness in all conditions.

Conclusions: Implementation strategy and safety zone definition strongly influence the real-life performance of intersection AEB. AEB should be applied not only for the turning vehicle but also for the straight-going vehicle to benefit from the full potential. Situationally appropriate safety zone definitions, in line with human hazard perception, need more attention and are a key to balance true positive and false positive performance. Remaining delta-V does not decrease broadly; hence, there is no evidence that future LTAP/OD crashes will be generally of lower severity. This highlights the need for continuous development of in-crash protection.  相似文献   

18.
Objective: Survival risk ratios (SRRs) and their probabilistic counterpart, mortality risk ratios (MRRs), have been shown to be at odds with Abbreviated Injury Scale (AIS) severity scores for particular injuries in adults. SRRs have been validated for pediatrics but have not been studied within the context of pediatric age stratifications. We hypothesized that children with similar motor vehicle crash (MVC) injuries may have different mortality risks (MR) based upon developmental stage and that these MRs may not correlate with AIS severity.

Methods: The NASS-CDS 2000–2011 was used to define the top 95% most common AIS 2+ injuries among MVC occupants in 4 age groups: 0–4, 5–9, 10–14, and 15–18 years. Next, the National Trauma Databank 2002–2011 was used to calculate the MR (proportion of those dying with an injury to those sustaining the injury) and the co-injury-adjusted MR (MRMAIS) for each injury within 6 age groups: 0–4, 5–9, 10–14, 15–18, 0–18, and 19+ years. MR differences were evaluated between age groups aggregately, between age groups based upon anatomic injury patterns and between age groups on an individual injury level using nonparametric Wilcoxon tests and chi-square or Fisher's exact tests as appropriate. Correlation between AIS and MR within each age group was also evaluated.

Results: MR and MRMAIS distributions of the most common AIS 2+ injuries were right skewed. Aggregate MR of these most common injuries varied between the age groups, with 5- to 9-year-old and 10- to 14-year-old children having the lowest MRs and 0- to 4-year-old and 15- to 18-year-old children and adults having the highest MRs (all P <.05). Head and thoracic injuries imparted the greatest mortality risk in all age groups with median MRMAIS ranging from 0 to 6% and 0 to 4.5%, respectively. Injuries to particular body regions also varied with respect to MR based upon age. For example, thoracic injuries in adults had significantly higher MRMAIS than such injuries among 5- to 9-year-olds and 10- to 14-year-olds (P =.04; P <.01). Furthermore, though AIS was positively correlated with MR within each age group, less correlation was seen for children than for adults. Large MR variations were seen within each AIS grade, with some lower AIS severity injuries demonstrating greater MRs than higher AIS severity injuries. As an example, MRMAIS in 0- to 18-year-olds was 0.4% for an AIS 3 radius fracture versus 1.4% for an AIS 2 vault fracture.

Conclusions: Trauma severity metrics are important for outcome prediction models and can be used in pediatric triage algorithms and other injury research. Trauma severity may vary for similar injuries based upon developmental stage, and this difference should be reflected in severity metrics. The MR-based data-driven determination of injury severity in pediatric occupants of different age cohorts provides a supplement or an alternative to AIS severity classification for pediatric occupants in MVCs.  相似文献   

19.
20.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号