首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purpose: This is a study of the influence of an unbelted rear occupant on the risk of severe injury to the front seat occupant ahead of them in frontal crashes. It provides an update to earlier studies.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to belted drivers and front passengers in frontal crashes by the presence of a belted or unbelted passenger seated directly behind them or without a rear passenger. Frontal crashes were identified with GAD1 = F without rollover (rollover ≤ 0). Front and rear outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4+F was determined using the number of occupants with known injury status MAIS 0+F. Standard errors were determined.

Results: The risk for severe injury was 0.803 ± 0.263% for the driver with an unbelted left rear occupant and 0.100 ± 0.039% with a belted left rear occupant. The driver's risk was thus 8.01 times greater with an unbelted rear occupant than with a belted occupant (P <.001). With an unbelted right rear occupant behind the front passenger, the risk for severe injury was 0.277 ± 0.091% for the front passenger. The corresponding risk was 0.165 ± 0.075% when the right rear occupant was belted. The front passenger's risk was 1.68 times greater with an unbelted rear occupant behind them than a belted occupant (P <.001). The driver's risk for MAIS 4+F was highest when their seat was deformed forward. The risk was 9.94 times greater with an unbelted rear occupant than with a belted rear occupant when the driver's seat deformed forward. It was 13.4 ± 12.2% with an unbelted occupant behind them and 1.35 ± 0.95% with a belted occupant behind them.

Conclusions: Consistent with prior literature, seat belt use by a rear occupant significantly lowered the risk for severe injury to belted occupants seated in front of them. The reduction was greater for drivers than for front passengers. It was 87.5% for the driver and 40.6% for the front passenger. These results emphasize the need for belt reminders in all seating positions.  相似文献   


2.
Objective: The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors.

Methods: Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively.

Results: There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted).

Conclusions: Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.  相似文献   

3.
PURPOSE: Vehicle and occupant responses in rollovers are complex since many factors influence both. This study analyzes the following factors: 1) belt use, 2) seated position with respect to the lead side in the rollover, 3) another front occupant in the crash, and 4) number of quarter rolls. The aim was to improve our understanding of rollover injury mechanisms. METHOD: Rollover accidents were analyzed using 1992-2004 NASS-CDS data. The sample included adult drivers and right-front passengers. All occupants were evaluated and then a subset of non-ejected occupants was analyzed. Using roll direction and seating position, the sample was divided into near- and far-seated occupants. Injury and fatality risks were determined by seatbelt use, occupancy, rollover direction, and number of quarter rolls. Risk was defined as the number of injured (e.g., MAIS 3+) divided by the number of exposed occupants (MAIS 0-6). Significance in differences was determined. A matched-pair analysis was used to determine the risk of serious injury for near- and far-seated occupants who were either belted or unbelted in the same crash. RESULTS: For all occupants, serious injury risks were highest for far-seated, unbelted occupants at 18.1% +/- 4.8%, followed by near-seated unbelted occupants at 12.0% +/- 3.5%. However, the difference was not statistically significant. Belted near- and far-seated occupants had a similar injury risk of 4.3% +/- 1.2% and 4.0% +/- 1.2%, respectively. For non-ejected occupants, serious injury risk was 9.5% +/- 3.2% for far-seated unbelted occupants and 4.9% +/- 2.1% for near-seated unbelted occupants, not a statistically significant difference. Serious injury risk was similar for belted near- and far-seated non-ejected occupants, at 3.6% +/- 1.1%. Seatbelts were 64.2%-77.9% effective in preventing serious injury for all occupants and 62.1%-26.5% for far- and near-seated, non-ejected occupants, respectively. Based on the matched pairs, seatbelts were less effective for near-seated (5.0%) compared to far-seated (2.8%) occupant MAIS 3+F risks. This was similar for non-ejected occupants. An unbelted near-seated occupant increased the risk for a belted far-seated occupant by 2.2 times, whereas an unbelted far-seated occupant increased the risk for a belted near-seated occupant by 10.2 times. For all occupants, the risk of serious injury increased with the number of quarter rolls, irrespective of seated position. For near-seated occupants, seatbelt effectiveness was higher in < or =1 roll than 1+ roll, at 72.3% compared to 28.3%. For far-seated occupants, seatbelt effectiveness was similar in < or =1 and 1+ roll samples at 78.3% and 76.8%, respectively. Near-seated occupants had the lowest serious injury risk when they were the sole occupant in the vehicle. This was also true for non-ejected occupants. However, far-seated occupants had a lower injury risk when another occupant was involved in the crash. CONCLUSIONS: The effect of carrying another occupant appears to reduce the risk of serious injury to far-seated occupants. However, near-seated occupants are better off being the sole occupant in the vehicle. Seatbelt effectiveness was lowest at 28.3% for non-ejected, near-seated occupants in 1+ rolls. This finding deserves further evaluation in an effort to improve seatbelt effectiveness in rollovers. For belted drivers alone in a rollover, fatality risks are 2.24 times higher for the far- versus near-seated position. Analysis of rollovers by quarter turns indicates that occupants are both far-side and near-side in rollovers. The extent to which this confounds the relationship between roll direction, seating position, and injury risk is unknown.  相似文献   

4.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

5.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


6.
7.
INTRODUCTION: The goal of this study was to gather information on the preferred front seat position of vehicle occupants and to determine the impact of variation in seat position on safety during crashes. METHOD: The study evaluated the relationship between seat position and occupant size using the chi-square test and compared the risk of severe injury for small females and large males with regard to forward and rearward seat position using logistic regression. RESULTS: While smaller drivers sat closer to the steering wheel than larger drivers, front passengers of all sizes used similar seat positions. Additionally, the risk of injury was higher for small, unbelted females in rearward seat positions and large males (belted and unbelted) in forward seat positions. CONCLUSIONS: Occupants who adjust their seats to positions that are not consistent with required federal tests are at a greater risk for severe injury in a crash.  相似文献   

8.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

9.
10.
Abstract

Objective: Impact speed is one of the most important factors explaining the severity of injuries to cyclists when they collide with passenger cars. To reduce injury severity (especially for vulnerable road users), since 2008, Swedish municipalities have the authority to lower the speed limit to 30 or 40?km/h in urban areas as appropriate. The aim of this study was to evaluate how this speed limit reduction has influenced the injury severity for cyclists in this type of collision.

Method: Data from 1,953 collisions between bicycles and passenger cars were collected using information from third-party-liability insurance claims from 2005 to 2017. The change of speed limit distribution, influenced by the reduction of speed limits in urban areas, where car-to-cyclist collisions occurred was studied. Following that, injury severity for cyclists was evaluated regarding collisions occurring in areas with different speed limits.

Results: The results show that, in collisions with cars, cyclists have a significantly lower risk of a moderate-to-fatal (MAIS 2+) injury when the speed limit is 30–40?km/h compared to 50–60?km/h. During the last decade, while the speed-limit has been lowered on many road-sections in urban areas from 50–60?km/h to 30–40?km/h the risk of a cyclist getting a MAIS 2+ injury decreased by 25%. In 2005 to 2011, 16% of the crashes happened on a road with a speed limit of 30–40?km/h; in 2016–2017, this percentage had increased to approximately 50%. Thus, in recent years more crashes occurred on roads with lower speed limits, and in these crashes, there was a lower risk of severe injuries to cyclists. Unfortunately, it was not possible to evaluate the risk of a crash for specific speed limits; since one limitation of this study was the lack of exposure data, nor do we know the impact speed or the actual speed of the vehicles.

Conclusions: This study is an important follow-up on the implementation of measures that can influence bicycle safety. The insurance data used, made it possible to quantify a positive effect on injury severity for cyclists in passenger car-to-cyclist collisions when the speed limit was reduced in urban areas. Insurance claims cover collisions of all crash severity, so they include data covering all types of injuries—not just the most severe/fatal ones. This aspect is especially important in the speed intervals evaluated here, since moderate (MAIS 2) injuries are very frequent in lower-speed crashes and even these injuries can result in long-term consequences.  相似文献   

11.

Introduction

Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury.

Methods

Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007.

Results

In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR) = 0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR = 0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR = 0.53; 95% CI = 0.10-2.68).

Impact on Industry

This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.  相似文献   

12.
13.
Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that experience overrepresented crashes, or an increase in the potential for crashes with higher severity levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating safety improvement resources. Methods: This paper uses urban and suburban intersection data in Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological rationality and accuracy by accommodating for the unobserved factors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle damage level are estimated using the same two methodologies to supplement the injury severity in estimating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low. Results: The model estimation results highlight the presence of correlations of crash counts among severity levels, as well as the crash counts in total and crash proportions by different severity levels. A comparison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions: Crash severity counts are significantly correlated and should be accommodated in crash prediction models. Practical application: The findings of this research could help select sound and reliable methodologies for predicting highway accidents by injury severity. When crash data samples have challenges associated with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle damage can be appropriate as an alternative to injury severity in crash prediction by severity.  相似文献   

14.
Abstract

Objective: The objective of this research study was to estimate the number of left turn across path/opposite direction (LTAP/OD) crashes and injuries that could be prevented in the United States if vehicles were equipped with an intersection advanced driver assistance system (I-ADAS).

Methods: This study reconstructed 501 vehicle-to-vehicle LTAP/OD crashes in the United States that were investigated in the NHTSA National Motor Vehicle Crash Causation Survey (NMVCCS). The performance of 30 different I-ADAS system variations was evaluated for each crash. These variations were the combinations of 5 time-to-collision (TTC) activation thresholds, 3 latency times, and 2 different response types (automated braking and driver warning). In addition, 2 sightline assumptions were modeled for each crash: One where the turning vehicle was visible long before the intersection and one where the turning vehicle was only visible within the intersection. For resimulated crashes that were not avoided by I-ADAS, a new crash delta-V was computed for each vehicle. The probability of Abbreviated Injury Scale 2 or higher injury in any body region (Maximum Abbreviated Injury Scale [MAIS] 2+F) to each front-row occupant was computed.

Results: Depending on the system design, sightline assumption, I-ADAS variation, and fleet penetration, an I-ADAS system that automatically applies emergency braking could avoid 18–84% of all LTAP/OD crashes. Only 0–32% of all LTAP/OD crashes could have been avoided using an I-ADAS system that only warns the driver. An I-ADAS system that applies emergency braking could prevent 47–93% of front-row occupants from receiving MAIS 2?+?F injuries. A system that warns the driver in LTAP/OD crashes was able to prevent 0–37% of front-row occupants from receiving MAIS 2?+?F injuries. The effectiveness of I-ADAS in reducing crashes and number of injured persons was higher when both vehicles were equipped with I-ADAS.

Conclusions: This study presents the simulated effectiveness of a hypothetical intersection active safety system on real crashes that occurred in the United States. This work shows that there is a strong potential to reduce crashes and injuries in the United States.  相似文献   

15.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   

16.
Objective: The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set.

Method: Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes―a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured).

Results: IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18–64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes.

Conclusions: The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.  相似文献   


17.
Objective: Traffic crashes result in a loss of life but also impact the quality of life and productivity of crash survivors. Given the importance of traffic crash outcomes, the issue has received attention from researchers and practitioners as well as government institutions, such as the European Commission (EC). Thus, to obtain detailed information on the injury type and severity of crash victims, hospital data have been proposed for use alongside police crash records. A new injury severity classification based on hospital data, called the maximum abbreviated injury scale (MAIS), was developed and recently adopted by the EC. This study provides an in-depth analysis of the factors that affect injury severity as classified by the MAIS score.

Method: In this study, the MAIS score was derived from the International Classification of Diseases. The European Union adopted an MAIS score equal to or greater than 3 as the definition for a serious traffic crash injury. Gains are expected from using both police and hospital data because the injury severities of the victims are detailed by medical staff and the characteristics of the crash and the site of its occurrence are also provided. The data were obtained by linking police and hospital data sets from the Porto metropolitan area of Portugal over a 6-year period (2006–2011). A mixed logit model was used to understand the factors that contribute to the injury severity of traffic victims and to explore the impact of these factors on injury severity. A random parameter approach offers methodological flexibility to capture individual-specific heterogeneity. Additionally, to understand the importance of using a reliable injury severity scale, we compared MAIS with length of hospital stay (LHS), a classification used by several countries, including Portugal, to officially report injury severity. To do so, the same statistical technique was applied using the same variables to analyze their impact on the injury severity classified according to LHS.

Results: This study showed the impact of variables, such as the presence of blood alcohol, the use of protection devices, the type of crash, and the site characteristics, on the injury severity classified according to the MAIS score. Additionally, the sex and age of the victims were analyzed as risk factors, showing that elderly and male road users are highly associated with MAIS 3+ injuries. The comparison between the marginal effects of the variables estimated by the MAIS and LHS models showed significant differences. In addition to the differences in the magnitude of impact of each variable, we found that the impact of the road environment variable was dependent on the injury severity classification.

Conclusions: The differences in the effects of risk factors between the classifications highlight the importance of using a reliable classification of injury severity. Additionally, the relationship between LHS and MAIS levels is quite different among countries, supporting the previous conclusion that bias is expected in the assessment of risk factors if an injury severity classification other than MAIS is used.  相似文献   


18.
Abstract

Objective: To meet increasing customer demand, many vehicle manufacturers are now offering a panoramic sunroof option in their vehicle lineup. Currently, there is no regulatory or consumer test aimed at assessing the potential for ejection mitigation of roof glazing, which leaves manufacturers to develop internal performance standards to guide designs. The goal of this study was to characterize the variety of occupant-to-roof impacts involving unbelted occupants in rollover crashes to determine the ranges of possible effective masses and impact velocities. This information can be used to define occupant retention requirements and performance criteria for roof glazing in occupant ejection protection.

Methods: This study combined computational (MADYMO and LS-Dyna) simulations of occupant kinematics in rollover crashes with laboratory rollover crash tests using the dynamic rollover test system (DRoTS) and linked them through controlled anthropomorphic test device (ATD)-to-roof (“drop”) impact tests. The DRoTS and the ATD drop tests were performed to explore impact scenarios and estimate dummy-to-roof impact impulses. Next, 13 sets of vehicle kinematics and deformation data were extracted from a combination of vehicle dynamics and finite element model simulations that reconstructed variations of rollover crash cases from the field data. Then occupant kinematics data were extracted from a full-factorial sensitivity study that used MADYMO simulations to investigate how changes in anthropometry and seating position would affect occupant–roof impacts across all 13 cases. Finite element (FE) simulations of ATD and Global Human Body Models Consortium (GHBMC) human body model (HBM) roof impacts were performed to investigate the most severe cases from the MADYMO simulations to generate a distribution of head-to-roof impact energies.

Results: From the multiparameter design of experiment and experimental study, kinematics and energy output were extracted and analyzed. Based on dummy-to-roof impact force and dummy-to-roof impact velocity, the most severe rollover scenarios were identified. In the DRoTS experiments followed by the drop tests, the range of identified impact velocities was between 2 and 5.8 m/s. However, computational simulations of the rollover crashes showed higher impact velocities and similar effective masses. The largest dummy-to-roof impact velocity was 11 m/s.

Conclusions: This study combined computational and experimental analyses to determine a range of possible unbelted occupant-to-roof impact energies. These results can be used to determine design parameters for an impactor for the assessment of the risk of roof glazing ejection for unbelted occupants in rollover crashes.  相似文献   

19.
Objective: The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012–2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test.

Methods: NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test.

Results: Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted.

Conclusion: Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号