首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems.

Methods: Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters.

Results: Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes.

Conclusions: This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.  相似文献   


2.
Abstract

Objectives: The objective of this study was to determine whether the amount of tension required for proper child restraint system (CRS) installation varies with lower anchor spacing and to determine whether nonexperts can produce adequate tension on wider-than-standard lower anchor configurations.

Methods: CRSs were installed by certified child passenger safety technicians (CPSTs; n?=?6 subjects, n?=?72 installations) and nonexperts (n?=?30 subjects, n?=?120 installations) on a mock-up vehicle seat fixture with lower anchors set at 11 (standard), 15, 19, and 23 in. apart from one another. Each CPST installed a rear-facing (RF) infant base, RF convertible, and forward-facing (FF) convertible into each of the 4 spacing configurations in random order. The CPSTs were instructed to tighten the lower connector strap until the tension was exactly at the threshold between passing and failing the 1-in. test. Each nonexpert installed one CRS model into all 4 spacing conditions in random order. Nonexperts were instructed to install the CRS to the best of their ability. The tension produced on the lower connector strap was recorded via load cell in the lower anchor assembly of the vehicle seat. Resultant tension magnitudes were compared across spacing conditions using matched pair t-tests. The CPSTs’ mean 1-in. test threshold values were compared to tensions produced by nonexperts. Installations were visually evaluated for errors and qualitative usability feedback was collected via survey.

Results: CPSTs installed the infant base with higher tensions in the 15-, 19-, and 23-in. configurations compared to the standard 11-in. configuration (P = .034, .032, and .003, respectively). The nonexperts installed the infant base with higher tension in the 15- and 23-in. configurations compared to the 11-in. configuration (P = .004 and .026, respectively). The RF convertible and FF convertible installations showed no significant differences in tension among any of the spacing configurations for either group. Only 19% of the nonexperts’ installations were tight enough to pass CPST thresholds, and the pass rate did not vary with respect to lower anchor spacing. In feedback surveys, the nonexpert group did not show a consistent preference for either standard or wider-than-standard lower anchor configurations.

Conclusions: The amount of tension required to pass the 1-in. rule did not vary with lower anchor spacing configurations for the RF and FF convertible CRS, but the infant base required more tension in wider anchor configurations. Nonexperts tended to produce less than ideal tension in all configurations, although their tension magnitudes increased for the infant base in wider configurations.  相似文献   

3.
Objective: To evaluate the influence of forward-facing child restraint systems’ (FFCRSs) side impact structure, such as side wings, on the head kinematics and response of a restrained, far- or center-seated 3-year-old anthropomorphic test device (ATD) in oblique sled tests.

Methods: Sled tests were conducted utilizing an FFCRS with large side wings and with the side wings removed. The CRS were attached via LATCH on 2 different vehicle seat fixtures—a small SUV rear bench seat and minivan rear bucket seat—secured to the sled carriage at 20° from lateral. Four tests were conducted on each vehicle seat fixture, 2 for each FFCRS configuration. A Q3s dummy was positioned in FFCRS according to the CRS owner's manual and FMVSS 213 procedures. The tests were conducted using the proposed FMVSS 213 side impact pulse. Three-dimensional motion cameras collected head excursion data. Relevant data collected during testing included the ATD head excursions, head accelerations, LATCH belt loads, and neck loads.

Results: Results indicate that side wings have little influence on head excursions and ATD response. The median lateral head excursion was 435 mm with side wings and 443 mm without side wings. The primary differences in head response were observed between the 2 vehicle seat fixtures due to the vehicle seat head restraint design. The bench seat integrated head restraint forced a tether routing path over the head restraint. Due to the lateral crash forces, the tether moved laterally off the head restraint reducing tension and increasing head excursion (477 mm median). In contrast, when the tether was routed through the bucket seat's adjustable head restraint, it maintained a tight attachment and helped control head excursion (393 mm median).

Conclusion: This testing illustrated relevant side impact crash circumstances where side wings do not provide the desired head containment for a 3-year-old ATD seated far-side or center in FFCRS. The head appears to roll out of the FFCRS even in the presence of side wings, which may expose the occupant to potential head impact injuries. We postulate that in a center or far-side seating configuration, the absence of door structure immediately adjacent to the CRS facilitates the rotation and tipping of the FFCRS toward the impact side and the roll-out of the head around the side wing structure. Results suggest that other prevention measures, in the form of alternative side impact structure design, FFCRS vehicle attachment, or shared protection between the FFCRS and the vehicle, may be necessary to protect children in oblique side impact crashes.  相似文献   

4.
Objectives: The objective of the study is to determine whether specific child restraint system (CRS) or vehicle conditions improve top tether attachment rates during volunteer installations.

Methods: A factorial randomized controlled trial was designed to evaluate 4 different experimental categories: (1) Color of tether adjuster casing (black or red), (2) labeling on tether adjuster casing (labeled with “Tether: Use for forward-facing” or unlabeled), (3) storage location of tether (bundled in a rubber band on the back of CRS or Velcroed over the forward-facing belt path), and (4) labeling in vehicle (labeled under head restraint and below anchor or unlabeled). Ninety-six volunteers were randomly assigned to one combination of conditions. One installation per volunteer was completed. The primary outcome measure was acceptable attachment of the top tether to the tether anchor. The secondary outcome measure was overall secureness of the installation. Pearson’s chi-square tests were used to identify significant predictors of acceptable outcomes and logistic regression was used to investigate interaction effects.

Results: A total of 66/96 subjects (68.8%) attached the top tether in an acceptable manner, with either zero errors (n?=?50) or minor errors (n?=?16). A total of 30/96 subjects (31.2%) had unacceptable tether outcomes, with either major errors (n?=?10) or nonuse the tether at all (n?=?20). None of the 4 experimental categories significantly affected tether outcomes. Subjects who opted to install the CRS with the lower anchors (LAs) had higher rates of acceptable tether attachment compared to subjects who installed using the seat belt or those who used both LA and seat belt together (χ2 = 6.792, P = .034). Tether outcomes were not correlated with previous CRS experience, use of instruction manual(s), age, or sex. Only 15.6% of subjects produced overall correct and tight installations. Of those who used the seat belt in some manner, 70.2% neglected to switch the retractor into locking mode.

Conclusions: Conditions in this study including tether color, tether labeling, storage location, and vehicle labeling did not significantly affect tether attachment rates. High rates of tether misuse and nonuse warrant further exploration to find effective solutions to this usability problem.  相似文献   

5.
Objectives: We explored if an alternative CRS design that utilized a mechanical adjunct to amplify the force applied to the adult seat belt (intervention CRS) results in more accurate and secure attachment between the CRS and the vehicle compared to similar CRS models that use LATCH or the existing adult seat belt. We conducted three separate studies to address this question and additionally explored: (1) the contribution of prior CRS installation experience (Study 1), (2) the value-added of CRS labeling (Study 2), and (3) paper-based vs. video instructions (Study 3).

Methods: In Studies 1 and 2 we assessed a forward facing combination CRS design (intervention CRS) compared to a commercially available LATCH equipped model (control CRS) and in Study 3 we conducted a similar study using a convertible model of both the intervention and control CRS. Participants installed both CRS in a contemporary minivan and could choose which type of attachment to use for the control CRS (LATCH or seat belt); order of installation was counter-balanced. Evaluators systematically examined installations for accuracy and security.

Results: Study 1: A greater proportion of participants in both the experienced and inexperienced groups was able to securely install the intervention CRS compared to the control CRS: (45% vs. 16%, p =.0001 for experienced) and (37% vs. 6%, p =.003 for inexperienced). No differences between the CRS were observed for accuracy of installation in either user group. Study 2: A greater proportion of participants were able to securely install the enhanced intervention CRS compared to the control CRS: (62% vs. 9%, p =.001). The intervention CRS demonstrated reduced installation accuracy: (30% vs. 61%, p =.001). Study 3: A greater proportion of participants was able to securely install the intervention CRS compared to the control CRS: 79% vs. 66% p =.03, but this effect was smaller than in the previous studies. Participants were less likely to achieve an accurate installation with the intervention CRS compared to the control CRS: 54% vs. 79%, p =.004. Common accuracy errors in each study included twisting or misrouting the seatbelt when installing the intervention CRS.

Conclusions: Our results suggest that novel CRS designs that utilize mechanical advantage to facilitate attachment of the CRS to the vehicle result in a tighter installation compared to LATCH equipped models, but an increase in accuracy errors occurred.  相似文献   

6.
Objective: The objective of this study was to obtain information about the current knowledge and habits of parents who transport children in cars in Brazil.

Methods: A cross-sectional survey was conducted using specifically designed self-report questionnaires to parents of children attending a private pediatric office in a town in southwest Brazil. Data were collected regarding children's age, gender, height, and weight and possession of an automobile child restraint system (CRS), its type, frequency and adequacy of use, and reasons for not possessing or not using the devices. Parents were asked whether their cars were equipped with airbags and about the use of the restraints in seats with airbags.

Results: We interviewed parents of 293 children transported in cars who met the criteria for use of a CRS. Children were younger than 1 year in 15.3% of the cases, between 1 and 4 years in 38.6%, and older than 4 in 46.1%. Cars were equipped with CRS in 78.5% of the cases, but in only 58% of the cases was the device proper for child's age and adequately installed in the seat. Among owners of the devices, 84.3% reported that they always used it. Reasons for infrequency were forgetting the device at home or in another car (6.4%), the child disliking the device (3.2%), or the false impression that the child was grown enough not to use it (3.2%)l 87.1% did not justify why they did not always use the CRS. Considering type of CRS, correct installation of the seat, and frequency of use, only 44.4% of children under 1 year, 69.9% of those 1 to 4 years, and 52.6% over age 4 were protected. Only 28.6% of the parents knew that children should never be positioned in a seat with active airbags.

Conclusion: Considering appropriateness for age, correctness of installation (in the back seat in the correct orientation), and frequency of use, only 50.85% (149/293) of the children were reported as always protected with a CRS. Children between 1 and 4 years were more likely to always use a CRS in this Brazilian survey. We were also able to identify an important gap in the knowledge about airbags among parents. Further efforts are needed to correct those distortions.  相似文献   


7.
IntroductionThe objective of this study was to determine if vehicle features associated with LATCH ease-of-use in laboratory studies with volunteers predict LATCH use and misuse in real-world child restraint installations.MethodVehicle characteristics were extracted from prior surveys of more than 100 top-selling 2010–13 vehicles. Use and correct use of LATCH was determined from records of more than 14,000 child restraint installations in these vehicles that were inspected by child passenger safety technicians at Safe Kids car seat checkup events during 2010–12. Logistic regression was used to examine the association between vehicle features and use and correct use of lower anchors and top tethers, controlling for other relevant installation features.ResultsLower anchors were more likely to be used and correctly used when the clearance angle around them was greater than 54°, the force required to attach them to the lower anchors was less than 178 N, and their depth within the seat bight was less than 4 cm. Restraints were more likely to be attached correctly when installed with the lower anchors than with the seat belt. After controlling for lower anchor use and other installation features, the likelihood of tether use and correct use in installations of forward-facing restraints was significantly higher when there was no hardware present that could potentially be confused with the tether anchor or when the tether anchor was located on the rear deck, which is typical in sedans.ConclusionsThere is converging evidence from laboratory studies with volunteers and real-world child restraint installations that vehicle features are associated with correct LATCH use.Practical applicationsVehicle designs that improve the ease of installing child restraints with LATCH could improve LATCH use rates and reduce child restraint misuse.  相似文献   

8.
Objectives: This study set out to examine seat belt and child restraint use in the Dammam Municipality of the Kingdom of Saudi Arabia, based on the premise that an increase in seat belt use would significantly reduce personal injury in traffic crashes. It was expected that local data would help identify intervention strategies necessary to improve seat belt use in the region.

Methods: The research involved 2 methodologies. First, 1,389 face-to-face interviews were conducted with male and female adults in regional shopping plazas regarding their own and their children's restraint use in their vehicles and reasons for these attitudes and beliefs. Second, 2 on-road observation studies of adult and child restraint use were conducted by trained observers. Occupants of approximately 5,000 passenger vehicles were observed while stopped at representative signalized traffic intersections.

Results: The findings showed front seat belt use rates of between 43 and 47% for drivers and 26 to 30% for front seat passengers; rear seat belt use rates were lower. While there seemed to be some knowledge about the purpose and reasons for restraining both adults and children in suitable restraints, this failed to be confirmed in the on-road observations.

Conclusions: Reasons for these rates and findings are discussed fully, and recommendations for improving seat belt use in the Dammam Municipality are included.  相似文献   


9.
INTRODUCTION: Although the LATCH System (Lower Anchors and Tethers for Children) holds the promise of simplifying the installation of a child restraint system (CRS) to the vehicle's seat, many drivers transporting young children have difficulties using this technology. This paper reports on an observation study of LATCH use and misuse. METHOD: Observations of approximately 1,000 children less than 5 years of age in CRSs, in the back seats of vehicles that were equipped with tether and lower anchors, in seven states. RESULTS: Tethers were used for 51% of the children when the forward-facing CRS had tether straps and the vehicle had tether anchors. Lower anchors were used for 58% of the children when the CRS had lower attachments and the vehicle had lower anchors. The most common tether and lower attachment misuses were loose tether straps (18% of cases) and loose lower attachment installation (30% of the cases), respectively. Vehicle safety belts were used in combination with lower attachments in 20% of all lower anchor installations. CONCLUSION: As more caregivers of young children drive vehicles equipped with LATCH, it will be important to promote the proper installation of CRSs using this technology. LATCH education messages must also emphasize that the lower anchors may not always be the safest choice for CRS attachment -- the safest attachment is the one that results in a tight fit and will be used correctly consistently.  相似文献   

10.
Objective: This study investigated overall performance of an energy-absorbing sliding seat concept for whiplash neck injury prevention. The sliding seat allows its seat pan to slide backward for some distance under certain restraint force to absorb crash energy in rear impacts.

Methods: A numerical model that consisted of vehicle interior, seat, seat belt, and BioRID II dummy was built in MADYMO to evaluate whiplash neck injury in rear impact. A parametric study of the effects of sliding seat parameters, including position and cushion stiffness of head restraint, seatback cushion stiffness, recliner characteristics, and especially sliding energy-absorbing (EA) restraint force, on neck injury criteria was conducted in order to compare the effectiveness of the sliding seat concept with that of other existing anti-whiplash mechanisms. Optimal sliding seat design configurations in rear crashes of different severities were obtained. A sliding seat prototype with bending of a steel strip as an EA mechanism was fabricated and tested in a sled test environment to validate the concept. The performance of the sliding seat under frontal and rollover impacts was checked to make sure the sliding mechanism did not result in any negative effects.

Results: The protective effect of the sliding seat with EA restraint force is comparable to that of head restraint–based and recliner stiffness–based anti-whiplash mechanisms. EA restraint force levels of 3 kN in rear impacts of low and medium severities and 6 kN in impacts of high severity were obtained from optimization. In frontal collision and rollover, compared to the nonsliding seat, the sliding seat does not result in any negative effects on occupant protection. The sled test results of the sliding seat prototype have shown the effectiveness of the concept for reducing neck injury risks.

Conclusion: As a countermeasure, the sliding seat with appropriate restraint forces can significantly reduce whiplash neck injury risk in rear impacts of low, medium, and high severities with no negative effects on other crash load cases.  相似文献   


11.
Objective: The objective of this article is to compare the performance of forward-facing child restraint systems (CRS) mounted on 2 different seats.

Methods: Two different anthropomorphic test device (ATD) sizes (P3 and P6), using the same child restraint system (a non-ISOFIX high-back booster seat), were exposed to the ECE R44 regulatory deceleration pulse in a deceleration sled. Two different seats (seat A, seat B) were used. Three repetitions per ATD and mounting seat were done, resulting in a total of 12 sled crashes. Dummy sensors measured the head tri-axial acceleration and angular rate and the thorax tri-axial acceleration, all acquired at 10,000 Hz. A high-speed video camera recorded the impact at 1,000 frames per second. The 3D kinematics of the head and torso of the ATDs were captured using a high-speed motion capture system (1,000 Hz). A pair-matched statistical analysis compared the outcomes of the tests using the 2 different seats.

Results: Statistically significant differences in the kinematic response of the ATDs associated with the type of seat were observed. The maximum 3 ms peak of the resultant head acceleration was higher on seat A for the P3 dummy (54.5 ± 1.9 g vs. 44.2 ± 0.5 g; P =.012) and for the P6 dummy (56.0 ± 0.8 g vs. 51.7 ± 1.2 g; P =.015). The peak belt force was higher on seat A than on seat B for the P3 dummy (5,488.0 ± 198.0 N vs. 4,160.6 ± 63.6 N; P =.008) and for the P6 dummy (7,014.0 ± 271.0 N vs. 5,719.3 ± 37.4 N; P =.015). The trajectory of the ATD head was different between the 2 seats in the sagittal, transverse, and frontal planes.

Conclusion: The results suggest that the overall response of the booster-seated occupant exposed to the same impact conditions was different depending on the seat used regardless of the size of the ATD. The differences observed in the response of the occupants between the 2 seats can be attributed to the differences in cushion stiffness, seat pan geometry, and belt geometry. However, these results were obtained for 2 particular seat models and a specific CRS and therefore cannot be directly extrapolated to the generality of vehicle seats and CRS.  相似文献   


12.
Objective: Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency—for example, in car seat clinics or during prototype user testing—to better identify and characterize the installation issues of greatest risk to safety.

Methods: A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency.

Results: Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation performance data revealed several areas of misuse of the CRS/booster seat associated with high potential injury risk.

Conclusions: Collectively, findings indicate that standardized ESS ratings are useful for estimating injury risk potential associated with real-world CRS and booster seat installation errors.  相似文献   


13.
14.
Objective: To predict shoulder belt fit and lap belt fit as a function of child age, vehicle seat characteristics, and belt geometry.

Methods: In a previous study, the lap belt and shoulder belt fit of 44 children aged 5–12 were measured in a simulated vehicle seat while varying cushion length, cushion angle, seatback angle, and belt anchorage geometry. A regression model was developed to predict lap belt fit and shoulder belt fit as a function of vehicle parameters and child stature. These regression models were applied to the stature distribution of 6- to 12-year-olds using a range of vehicle geometry data to predict the proportion of children expected to achieve good belt fit in the second-row, outboard seating positions of 46 vehicles when not using belt-positioning boosters.

Results: Across the ranges observed in vehicles, lap belt angle had the strongest effect on lap belt fit, although vehicle cushion length also contributed. Shoulder belt fit was most strongly affected by D-ring location. Vehicles with the geometric conditions most suitable for children are estimated to provide good lap belt fit for 25% of children aged 6 to 12. In 20% of vehicles, the shoulder belt is too far inboard for the target child population; 20% of vehicles are estimated to have shoulder belt fit too far outboard for children ages 6 to 12.

Conclusions: Based on this geometric analysis, the rear seats of most vehicles are unlikely to provide good lap belt fit for up to 75% of children ages 6–12. Shoulder belt fit is outside the target range for 40% of children. Consequently, children under 12 years of age are likely to experience markedly poorer belt fit when transitioning out of a booster seat.  相似文献   


15.
Objective: The Lower Anchor and Tethers for CHildren (LATCH) system was introduced in vehicles made after September 1, 2002 and intended to make installation of rear and forward-facing child safety seats easier. Due to the lack of rear impact testing of RFCRS required per the Federal Motor Vehicle Safety Standards (FMVSS), the purpose of this study was to explore the effects, if any, of installation method of RFCRS on the performance of commonly purchased makes and models of RFCRS. Specifically, we hypothesize that in a 48 km/h (29.8 MPH) rear-end collision, installation of RFCRS using the LATCH system will result in higher Head Injury Criteria (HIC) values when compared to using the available lap/shoulder seatbelt (Emergency Locking Retractor - ELR or Automatic Locking Retractor - ALR).

Methods: The test matrix included 36 rear impact sled tests conducted using 3 installation methods on 3 models of RFCRS: the Graco SnugRide® with and without the base, the Britax Chaperone with base-mounted anti-rebound bar, and the Evenflo Tribute®, a model of convertible rearward/forward facing restraint system used in the rearward facing mode. The seats were installed using the LATCH system, ELR lap/shoulder belts, or ALR lap/shoulder belts in seating positions 4 and 6 on a vehicle buck mounted to the sled test base. The infant seat and 6 month old CRABI anthropometric test device (ATD) installation methods were in accordance with standards set forth in the National Highway Traffic Safety Administration's (NHTSA) FMVSS No. 213, Child Restraint Systems. All tests were conducted on pneumatic controlled acceleration sled (HYGE, Inc., PA, USA) at 48 km/h.

Results: Installation of infant seat type RFCRS using the LATCH system resulted in higher HIC15 values when compared to using the available lap/shoulder seatbelt (ELR or ALR). The mean HIC15 values were most severe when infant seat type RFCRS were installed using LATCH (Graco SnugRide® HIC15 = 394 and Britax Chaperone HIC15 = 133) compared to using either ELR lap/shoulder belts (Graco SnugRide® HIC15 = 218 and Britax Chaperone HIC15 = 65) or ALR lap/shoulder belts (Graco SnugRide® HIC15 = 194 and Britax Chaperone HIC15 = 78). The installation method did not result in a statistically significant difference in HIC for the convertible type RFCRS (Evenflo Tribute®). In many of the tests, the ATD's head struck the seatback in which the RFCRS was installed. These head strikes resulted in the higher HIC15 scores recorded throughout the testing.

Conclusions: The results of this study suggest that LATCH does not offer equal protection to lap/shoulder belts from head injuries in rear impacts when used with infant seat type RFCRS.  相似文献   

16.
Objective: A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases.

Method: Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury.

Results: Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured.

Conclusions: A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.  相似文献   

17.
Objective: Motor vehicle accidents, which are among the main causes of child mortality in Iran and the Middle East, impose staggering costs for the community. Ignoring use of safety devices for children in most motor vehicle crashes will lead to death or serious injury. Because few studies have been performed on effective and predictive factors regarding use of child safety seats, the purpose of this study was to examine the factors affecting the use and nonuse of child safety seats, along with the factors that can facilitate how a child safety seat is used.

Method: This study was conducted in the urban area of Gorgan using a questionnaire. Through random selection, 204 parents with at least one child, aged 8?years or younger, reported their knowledge about the benefits of using a child safety seat.

Results: The results showed that 80% of parents never use a child safety seat, and 13% always use a child safety seat. More than 93% thought that it was necessary to make usage of the child safety seat obligatory. In addition, 80% of parents believed that a child safety seat prevents children from injury in crashes. In addition, 38% of parents were not aware of child safety devices and child safety, less than 20% said that they did not use a child safety seat because their spouse did not support its use, and 28% of them thought that a child safety seat does not affect the safety of the child. In general, 91% of parents reported that if child safety seat use were mandated, the frequency of use would increase. A law on the use of child safety seats is a very important variable in their use, which can enhance the chance of using a child safety seat by 6.5 times.

Conclusion: Special instructions should be developed to create incentive strategies for using a child safety seat. Mandating the use of a child safety seat, equipping cars with a child safety seat, encouraging children to use it, and providing continuous education and training are important factors for increasing the use of child safety seats.  相似文献   

18.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   

19.
IntroductionSeat belts reduce the risk of fatal injury in a crash, yet in 2015, nearly 10,000 people killed in passenger vehicles were unrestrained. Enhanced seat belt reminders increase belt use, but a gearshift interlock that prevents the vehicle from being placed into gear unless the seat belt is used may prove more effective.MethodThirty-two people with a recent seat belt citation and who admitted to not always using a seat belt as a driver were recruited as part-time belt users and asked to evaluate two new vehicles. Sixteen drove two vehicles with an enhanced reminder for one week each, and 16 drove a vehicle with an enhanced reminder for one week and a vehicle with a gearshift interlock the following week. Sixteen full-time belt users who reported always using a seat belt drove a vehicle with a gearshift interlock for one week to evaluate acceptance.ResultsRelative to the enhanced reminder, the gearshift interlock significantly increased the likelihood that a part-time belt user used a belt during travel time in a trip by 21%, and increased the rate of belt use by 16%; this effect approached significance. Although every full-time belt user experienced the gearshift interlock, their acceptance of the technology reported in a post-study survey was fairly positive and not significantly different from part-time belt users. Six part-time belt users circumvented the gearshift interlock by sitting on a seat belt, waiting for the system to deactivate, or unbuckling during travel.ConclusionThe gearshift interlock increased the likelihood that part-time belt users buckled up and the rate of belt use during travel relative to the enhanced reminder but could be more effective if it prevented circumvention.Practical applicationsAn estimated 718–942 lives could be saved annually if the belt use of unbuckled drivers and front passengers increased 16–21%.  相似文献   

20.
Objective: Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety—including differences in compartment geometry and occupant clothing and gear—that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes.

Methods: In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test.

Results: Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear.

Conclusions: ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号