首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Objectives: The 2 objectives of this study are to (1) examine the rib and sternal fractures sustained by small stature elderly females in simulated frontal crashes and (2) determine how the findings are characterized by prior knowledge and field data.

Methods: A test series was conducted to evaluate the response of 5 elderly (average age 76 years) female postmortem human subjects (PMHS), similar in mass and size to a 5th percentile female, in 30 km/h frontal sled tests. The subjects were restrained on a rigid planar seat by bilateral rigid knee bolsters, pelvic blocks, and a custom force-limited 3-point shoulder and lap belt. Posttest subject injury assessment included identifying rib cage fractures by means of a radiologist read of a posttest computed tomography (CT) and an autopsy. The data from a motion capture camera system were processed to provide chest deflection, defined as the movement of the sternum relative to the spine at the level of T8.

?A complementary field data investigation involved querying the NASS-CDS database over the years 1997–2012. The targeted cases involved belted front seat small female passenger vehicle occupants over 40 years old who were injured in 25 to 35 km/h delta-V frontal crashes (11 to 1 o'clock).

Results: Peak upper shoulder belt tension averaged 1,970 N (SD = 140 N) in the sled tests. For all subjects, the peak x-axis deflection was recorded at the sternum with an average of ?44.5 mm or 25% of chest depth. The thoracic injury severity based on the number and distribution of rib fractures yielded 4 subjects coded as Abbreviated Injury Scale (AIS) 3 (serious) and one as AIS 5 (critical). The NASS-CDS field data investigation of small females identified 205 occupants who met the search criteria. Rib fractures were reported for 2.7% of the female occupants.

Conclusions: The small elderly test subjects sustained a higher number of rib cage fractures than expected in what was intended to be a minimally injurious frontal crash test condition. Neither field studies nor prior laboratory frontal sled tests conducted with 50th percentile male PMHS predicted the injury severity observed. Although this was a limited study, the results justify further exploration of the risk of rib cage injury for small elderly female occupants.  相似文献   

2.
Abstract

Objective: The goal of the study was to develop experimental chest loading conditions that would cause up to Abbreviated Injury Scale (AIS) 2 chest injuries in elderly occupants in moderate-speed frontal crashes. The new set of experimental data was also intended to be used in the benchmark of existing thoracic injury criteria in lower-speed collision conditions.

Methods: Six male elderly (age >63) postmortem human subjects (PMHS) were exposed to a 35?km/h (nominal) frontal sled impact. The test fixture consisted of a rigid seat, rigid footrest, and cable seat back. Two restraint conditions (A and B) were compared. Occupants were restrained by a force-limited (2.5?kN [A] and 2?kN [B]) seat belt and a preinflated (16?kPa [A] and 11?kPa [B]; airbag). Condition B also incorporated increased seat friction. Matching sled tests were carried out with the THOR-M dummy. Infra-red telescoping rod for the assessment of chest compression (IRTRACC) readings were used to compute chest injury risk. PMHSs were exposed to a posttest injury assessment. Tests were carried out in 2 stages, using the outcome of the first one combined with a parametric study using the THUMS model to adjust the test conditions in the second. All procedures were approved by the relevant ethics board.

Results: Restraint condition A resulted in an unexpected high number of rib fractures (fx; 10, 14, 15 fx). Under condition B, the adjustment of the relative airbag/occupant position combined with a lower airbag pressure and lower seat belt load limit resulted in a reduced pelvic excursion (85 vs. 110?mm), increased torso pitch and a substantially lower number of rib fractures (1, 0, 4 fx) as intended.

Conclusions: The predicted risk of rib fractures provided by the THOR dummy using the Cmax and PC Score injury criteria were lower than the actual injuries observed in the PMHS tests (especially in restraint condition A). However, the THOR dummy was capable of discriminating between the 2 restraint scenarios. Similar results were obtained in the parametric study with the THUMS model.  相似文献   

3.
Objective: To conduct near-side moving deformable barrier (MDB) and pole tests with postmortem human subjects (PMHS) in full-scale modern vehicles, document and score injuries, and examine the potential for angled chest loading in these tests to serve as a data set for dummy biofidelity evaluations and computational modeling.

Methods: Two PMHS (outboard left front and rear seat occupants) for MDB and one PMHS (outboard left front seat occupant) for pole tests were used. Both tests used sedan-type vehicles from same manufacturer with side airbags. Pretest x-ray and computed tomography (CT) images were obtained. Three-point belt-restrained surrogates were positioned in respective outboard seats. Accelerometers were secured to T1, T6, and T12 spines; sternum and pelvis; seat tracks; floor; center of gravity; and MDB. Load cells were used on the pole. Biomechanical data were gathered at 20 kHz. Outboard and inboard high-speed cameras were used for kinematics. X-rays and CT images were taken and autopsy was done following the test. The Abbreviated Injury Scale (AIS) 2005 scoring scheme was used to score injuries.

Results: MDB test: male (front seat) and female (rear seat) PMHS occupant demographics: 52 and 57 years, 177 and 166 cm stature, 78 and 65 kg total body mass. Demographics of the PMHS occupant in the pole test: male, 26 years, 179 cm stature, and 84 kg total body mass. Front seat PMHS in MDB test: 6 near-side rib fractures (AIS = 3): 160–265 mm vertically from suprasternal notch and 40–80 mm circumferentially from center of sternum. Left rear seat PMHS responded with multiple bilateral rib fractures: 9 on the near side and 5 on the contralateral side (AIS = 3). One rib fractured twice. On the near and contralateral sides, fractures were 30–210 and 20–105 mm vertically from the suprasternal notch and 90–200 and 55–135 mm circumferentially from the center of sternum. A fracture of the left intertrochanteric crest occurred (AIS = 3). Pole test PMHS had one near-side third rib fracture. Thoracic accelerations of the 2 occupants were different in the MDB test. Though both occupants sustained positive and negative x-accelerations to the sternum, peak magnitudes and relative changes were greater for the rear than the front seat occupant. Magnitudes of the thoracic and sternum accelerations were lower in the pole test.

Conclusions: This is the first study to use PMHS occupants in MDB and pole tests in the same recent model year vehicles with side airbag and head curtain restraints. Injuries to the unilateral thorax for the front seat PMHS in contrast to the bilateral thorax and hip for the rear seat occupant in the MDB test indicate the effects of impact on the seating location and restraint system. Posterolateral locations of fractures to the front seat PMHS are attributed to constrained kinematics of occupant interaction with torso side airbag restraint system. Angled loading to the rear seat occupant from coupled sagittal and coronal accelerations of the sternum representing anterior thorax loading contributed to bilateral fractures. Inward bending initiated by the distal femur complex resulting in adduction of ipsilateral lower extremity resulted in intertrochanteric fracture to the rear seat occupant. These results serve as a data set for evaluating the biofidelity of the WorldSID and federalized side impact dummies and assist in validating human body computational models, which are increasingly used in crashworthiness studies.  相似文献   

4.
Objective: The shape, size, bone density, and cortical thickness of the thoracic skeleton vary significantly with age and sex, which can affect the injury tolerance, especially in at-risk populations such as the elderly. Computational modeling has emerged as a powerful and versatile tool to assess injury risk. However, current computational models only represent certain ages and sexes in the population. The purpose of this study was to morph an existing finite element (FE) model of the thorax to depict thorax morphology for males and females of ages 30 and 70 years old (YO) and to investigate the effect on injury risk.

Methods: Age- and sex-specific FE models were developed using thin-plate spline interpolation. In order to execute the thin-plate spline interpolation, homologous landmarks on the reference, target, and FE model are required. An image segmentation and registration algorithm was used to collect homologous rib and sternum landmark data from males and females aged 0–100 years. The Generalized Procrustes Analysis was applied to the homologous landmark data to quantify age- and sex-specific isolated shape changes in the thorax. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant model was morphed to create age- and sex-specific thoracic shape change models (scaled to a 50th percentile male size). To evaluate the thoracic response, 2 loading cases (frontal hub impact and lateral impact) were simulated to assess the importance of geometric and material property changes with age and sex.

Results: Due to the geometric and material property changes with age and sex, there were observed differences in the response of the thorax in both the frontal and lateral impacts. Material property changes alone had little to no effect on the maximum thoracic force or the maximum percent compression. With age, the thorax becomes stiffer due to superior rotation of the ribs, which can result in increased bone strain that can increase the risk of fracture. For the 70-YO models, the simulations predicted a higher number of rib fractures in comparison to the 30-YO models. The male models experienced more superior rotation of the ribs in comparison to the female models, which resulted in a higher number of rib fractures for the males.

Conclusion: In this study, age- and sex-specific thoracic models were developed and the biomechanical response was studied using frontal and lateral impact simulations. The development of these age- and sex-specific FE models of the thorax will lead to an improved understanding of the complex relationship between thoracic geometry, age, sex, and injury risk.  相似文献   

5.
Objective: Field data show that side impact car crashes have become responsible for a greater proportion of the fatal crashes compared to frontal crashes, which suggests that the protection gained in frontal impact has not been matched in side impact. One of the reasons is the lack of understanding of the torso injury mechanisms in side impact. In particular, the deformation of the rib cage and how it affects the mechanical loading of the individual ribs have yet to be established. Therefore, the objective of this study was to characterize the ribcage deformation in side impacts by describing the kinematics of the sternum relative to the spine.

Methods: The 3D kinematics of the 1st and of the 5th or 6th thoracic vertebrae and of the sternum were obtained for three Post Mortem Human Subjects (PMHS) impacted laterally by a rigid wall traveling at 15 km/h. The experimental data were processed to express the kinematics of the sternum relative to the spine throughout the impact event. Methods were developed to interpolate the kinematics of the vertebrae for which experimental data were not available.

Results: The kinematics of the sternocostal junction for ribs 1 to 6 as well as the orientation of the sternum were expressed in the vertebra coordinate systems defined for each upper thoracic vertebra (T1 to T6). Corridors were designed for the motion of the sternum relative to each vertebra. In the experiments, the sternum moved upward for all rib levels (1 to 6), and away from the spine with an amplitude that increased with the decreasing rib level (from rib 1 to rib 6). None of the differences observed in the kinematics could be correlated to the occurrence of rib fractures.

Conclusions: This study provides both qualitative and quantitative information for the ribcage skeletal kinematics in side impact. This data set provides the information required to better evaluate computational models of the thorax for side impact simulations. The corridors developed in this study provide new biofidelity targets for the impact response of the ribcage. This study contributes to augmenting the state of knowledge of the human chest deformation in side impact to better characterize the rib fracture mechanisms.  相似文献   

6.
Objective: The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts.

Methods: This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments.

Results: The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0).

Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation.

Conclusions: This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis and the spine for the models which makes the model response very sensitive to any variation in the spine posture. Consequently, the findings observed for the HBM cannot be extended to PMHS. Besides, pre-impact posture should be carefully quantified during experiments and the evaluation of HBM should take into account the variation in the predicted impact response due to the variation in the model posture.  相似文献   

7.
A majority of laboratory-driven side-impact injury assessments are conducted using postmortem human subjects (PMHS) under the pure lateral mode. Because real-world injuries occur under pure and oblique modes, this study was designed to determine chest deflections and injuries using PMHS under the latter mode. Anthropometrical data were obtained and x-rays were taken. Specimens were seated on a sled and lateral impact acceleration corresponding to a change in velocity of 24 km/h was applied such that the vector was at an angle of 20 or 30 degrees. Chestbands were fixed at the level of the axilla (upper), xyphoid process (middle), and tenth rib (lower) location. Deflection contours as a function of time at the levels of the axilla and mid-sternum, representing the thorax, and at the tenth rib level, representing the abdomen, were evaluated for peak magnitudes. All data were normalized using mass-scaling procedures. Injuries were identified following the test at autopsy. Trauma graded according to the Abbreviated Injury Score, 1990 version, indicated primarily unilateral rib fractures and soft tissue abnormalities such as lung contusion and diaphragm laceration occurred. Mean peak deflections at the upper, middle, and lower levels of the chest for the 30-degree tests were 96.2, 78.5, and 76.8 mm. For the 20-degree tests, these magnitudes were 77.5, 89.9, and 73.6 mm. Statistical analysis indicated no significant (p > 0.05) differences in peak chest deflections at all levels between the two obliquities although the metric was significantly greater in oblique than pure lateral impacts at the mid and lower thoracic levels. These response data are valuable in oblique lateral impact assessments.  相似文献   

8.
Objective: The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors.

Methods: Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively.

Results: There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted).

Conclusions: Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.  相似文献   

9.
Objective: The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model.

Methods: Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion.

Results: The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment.

Conclusions: The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.  相似文献   


10.
Abstract

Objective: The focus of this study is side impact. Though occupant injury assessment and protection in nearside impacts has received considerable attention and safety standards have been promulgated, field studies show that a majority of far-side occupant injuries are focused on the head and thorax. The 50th percentile male Test Device for Human Occupant Restraint (THOR) has been used in oblique and lateral far-side impact sled tests, and regional body accelerations and forces and moments recorded by load cells have been previously reported. The aim of this study is to evaluate the chestband-based deflection responses from these tests.

Methods: The 3-point belt–restrained 50th percentile male THOR dummy was seated upright in a buck consisting of a rigid flat seat, simulated center console, dashboard, far-side side door structure, and armrest. It was designed to conduct pure lateral and oblique impacts. The center console, dashboard, simulated door structure, and armrest were covered with energy-absorbing materials. A center-mounted airbag was mounted to the right side of the seat. Two 59-gage chestbands were routed on the circumference of the thorax, with the upper and lower chestbands at the level of the third and sixth ribs, respectively, following the rib geometry. Oblique and pure lateral far-side impact tests with and without airbags were conducted at 8.3 m/s. Maximum chest deflections were computed by processing temporal contours using custom software and 3 methods: Procedures paralleling human cadaver studies, using the actual anchor point location and actual alignment of the InfraRed Telescoping Rods for the Assessment of Chest Compression (IR-TRACC) in the dummy on each aspect—that is, right or left,—and using the same anchor location of the internal sensor but determining the location of the peak chest deflection on the contour confined to the aspect of the sensor; these were termed the SD, ID, and TD metrics, respectively.

Results: All deformation contours at the upper and lower thorax levels and associated peak deflections are given for all tests. Briefly, the ID metrics were the lowest in magnitude for both pure lateral and oblique modes, regardless of the presence or absence of an airbag. This was followed by the TD metric, and the SD metric produced the greatest deflections.

Conclusion: The chestbands provide a unique opportunity to compute peak deflections that parallel current IR-TRACC-type deflections and allow computation of peak deflections independent of the initial point of attachment to the rib. The differing locations of the peak deflection vectors along the rib contours for different test conditions suggest that a priori attachment is less effective. Further, varying magnitudes of the differences between ID and TD metrics underscore the difficulty in extrapolating ID outputs under different conditions: Pure lateral versus oblique, airbag presence, and thoracic levels. Deflection measurements should, therefore, not be limited to an instrument that can only track from a fixed point. For improved predictions, these results suggest the need to investigate alternative techniques, such as optical methods to improve chest deflection measurements for far-side occupant injury assessment and mitigation.  相似文献   

11.
Objectives: This paper quantifies pediatric thoracoabdominal response to belt loading to guide the scaling of existing adult response data and to assess the validity of a juvenile porcine abdominal model for application to the development of physical and computational models of the human child. Methods: Table-top belt-loading experiments were performed on 6, 7, and 15 year-old pediatric post-mortem human subjects (PMHS). Response targets are reported for diagonal belt and distributed loading of the anterior thorax and for horizontal belt loading of the abdomen. Results: The pediatric PMHS exhibited abdominal response similar to the swine, including the degree of rate sensitivity. The thoraces of the PMHS were as stiff as, or slightly more stiff than, published adult corridors. Conclusions: An assessment of age-related changes in thoracic stiffness suggests that the effective stiffness of the chest increases through the fourth decade of life and then decreases, resulting in stiffness values similar for children and elderly adults.  相似文献   

12.
Objective: This study aims, by means of the WorldSID 50th percentile male, to evaluate thoracic loading and injury risk to the near-side occupant due to occupant-to-occupant interaction in combination with loading from an intruding structure.

Method: Nine vehicle crash tests were performed with a 50th percentile WorldSID male dummy in the near-side (adjacent to the intruding structure) seat and a THOR or ES2 dummy in the far-side (opposite the intruding structure) seat. The near-side seated WorldSID was equipped with 6 + 6 IR-Traccs (LH and RH) in the thorax/abdomen enabling measurement of bilateral deflection. To differentiate deflection caused by the intrusion, and the deflection caused by the neighboring occupant, time history curves were analyzed. The crash tests were performed with different modern vehicles, equipped with thorax side airbags and inflatable curtains, ranging from a compact car to a large sedan, and in different loading conditions such as car-to-car, barrier, and pole tests. Lateral delta V based on vehicle tunnel acceleration and maximum residual intrusion at occupant position were used as a measurement of crash severity to compare injury measurements.

Result: In the 9 vehicle crash tests, thoracic loading, induced by the intruding structure as well as from the far-side occupant, varied due to the size and structural performance of the car as well as the severity of the crash. Peak deflection on the thoracic outboard side occurred during the first 50 ms of the event. Between 70 to 150 ms loading induced by the neighboring occupant occurred and resulted in an inboard-side peak deflection and viscous criterion. In the tests where the target vehicle lateral delta V was below 30 km/h and intrusion less than 200 mm, deflections were low on both the outboard (20–40 mm) and inboard side (10–15 mm). At higher crash severities, delta V 35 km/h and above as well as intrusions larger than 350 mm, the inboard deflections (caused by interaction to the far-side occupant) were of the same magnitude or even higher (30–70 mm) than the outboard deflections (30–50 mm).

Conclusion: A WorldSID 50th percentile male equipped with bilateral IR-Traccs can detect loading to the thorax from a neighboring occupant making injury risk assessment feasible for this type of loading. At crash severities resulting in a delta V above 35 km/h and intrusions larger than 350 mm, both the inboard deflection and VC resulted in high risks of Abbreviated Injury Scale (AIS) 3+ injury, especially for a senior occupant.  相似文献   

13.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

14.
Objective: The goal of this study was to investigate the influence of the occupant characteristics on seat belt force vs. payout behavior based on experiment data from different configurations in frontal impacts.

Methods: The data set reviewed consists of 58 frontal sled tests using several anthropomorphic test devices (ATDs) and postmortem human subjects (PMHS), restrained by different belt systems (standard belt, SB; force-limiting belt, FLB) at 2 impact severities (48 and 29 km/h). The seat belt behavior was characterized in terms of the shoulder belt force vs. belt payout behavior. A univariate linear regression was used to assess the factor significance of the occupant body mass or stature on the peak tension force and gross belt payout.

Results: With the SB, the seat belt behavior obtained by the ATDs exhibited similar force slopes regardless of the occupant size and impact severities, whereas those obtained by the PMHS were varied. Under the 48 km/h impact, the peak tension force and gross belt payout obtained by ATDs was highly correlated to the occupant stature (P =.03, P =.02) and body mass (P =.05, P =.04), though no statistical difference with the stature or body mass were noticed for the PMHS (peak force: P =.09, P =.42; gross payout: P =.40, P =.48). With the FLB under the 48 km/h impact, highly linear relationships were noticed between the occupant body mass and the peak tension force (R2 = 0.9782) and between the gross payout and stature (R2 = 0.9232) regardless of the occupant types.

Conclusions: The analysis indicated that the PMHS characteristics showed a significant influence on the belt response, whereas the belt response obtained with the ATDs was more reproducible. The potential cause included the occupant anthropometry, body mass distribution, and relative motion among body segments specific to the population variance. This study provided a primary data source to understand the biomechanical interaction of the occupant with the restraint system. Further research is necessary to consider these effects in the computational studies and optimized design of the restraint system in a more realistic manner.  相似文献   


15.
Objective: Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety—including differences in compartment geometry and occupant clothing and gear—that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes.

Methods: In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test.

Results: Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear.

Conclusions: ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.  相似文献   


16.
17.
Objective: Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.01) was compared to the cadaveric response in vehicle–pedestrian impacts using geometrically personalized models.

Methods: The AM50 THUMS PFEM was used as the baseline model, and 2 morphed PFEM were created to the anthropometric specifications of 2 obese PMHS used in a previous pedestrian impact study with a mid-size sedan. The same measurements as those obtained during the PMHS tests were calculated from the simulations (kinematics, accelerations, strains), and biofidelity metrics based on signals correlation (correlation and analysis, CORA) were established to compare the response of the models to the experiments. Injury outcomes were predicted deterministically (through strain-based threshold) and probabilistically (with injury risk functions) and compared with the injuries reported in the necropsy.

Results: The baseline model could not accurately capture all aspects of the PMHS kinematics, strain, and injury risks, whereas the morphed models reproduced biofidelic response in terms of trajectory (CORA score = 0.927 ± 0.092), velocities (0.975 ± 0.027), accelerations (0.862 ± 0.072), and strains (0.707 ± 0.143). The personalized THUMS models also generally predicted injuries consistent with those identified during posttest autopsy.

Conclusions: The study highlights the need to control for pedestrian anthropometry when validating pedestrian human body models against PMHS data. The information provided in the current study could be useful for improving model biofidelity for vehicle–pedestrian impact scenarios.  相似文献   


18.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   

19.
ABSTRACT

Objective: This study analyzed the influence of reference sensor inputs from anthropomorphic test devices (ATDs) versus postmortem human subjects (PMHSs) on simulations of frontal blunt impacts to the advanced combat helmet (ACH).

Methods: A rigid-arm pendulum was used to generate frontal impacts to ACHs mounted on ATDs and PMHS. An appropriately sized ACH was selected according to standard fitting guidelines. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) head was selected for ATD tests due to shape features that enabled a realistic helmet fit. A custom procedure was used to mount a reference sensor internally near the center of gravity (CG) of the PMHS. Reference sensor data from the head CG were used as inputs for the Simulated Injury Monitor (SIMon). Brain responses were assessed with the cumulative strain damage measure set at 10%, or CSDM(10).

Results: Compared to ATD tests, PMHS tests produced 18.7% higher peak linear accelerations and 5.2% higher peak angular velocities. Average times to peak for linear accelerations were relatively similar between ATDs (5.5?ms) and PMHSs (5.8?ms). However, times to peak for angular velocities were higher by a factor of up to 3.4 for PMHSs compared to ATDs. Values for were also higher by a factor of up to 13.1 when PMHS inputs were used for SIMon.

Conclusions: The preliminary findings of this work indicate that small differences in ATD versus PMHS head kinematics could lead to large differences in strain-derived brain injury metrics such as CSDM.  相似文献   

20.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号