首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
高州水库沉积物中总氮与总磷的分布特征研究   总被引:3,自引:0,他引:3  
为掌握高州水库沉积物中氮磷时空分布特征,于2010年至2012年对高州水库良德和石骨库区及入库河口沉积物TN、TP进行调查与分析,结果表明:高州水库沉积物中TN、TP污染严重且空间分布差异明显,TN含量变化范围为780 mg/kg~2 033 mg/kg,均值为1 392 mg/kg,TP含量变化范围为338 mg/kg~726 mg/kg,均值为492 mg/kg,TN、TP含量分布规律均呈现良德库区石骨库区入库河口,TN、TP垂向分布含量随沉积深度的增加而递减,呈现表层富集现象,TN、TP含量有逐年增加的趋势。  相似文献   

2.
黄海表层沉积物中总磷的地球化学特征   总被引:8,自引:0,他引:8  
对黄海陆架区的 7条测线的表层沉积物样品进行了总磷 (TP)的分析测定 ,阐述了调查海区TP的平面分布特征 ,通过分析水动力条件、粒度及磷的自生作用等因素 ,探讨了TP聚集区和分散区的成因 ,发现沉积物的粒径与TP含量的相关性较差 ,与其他区域P的丰度进行比较后 ,认为黄海表层沉积物中P为非陆源性的 ,并处于“弱贫化”状态。  相似文献   

3.
白塔堡河上覆水与沉积物间隙水N、P分布特征   总被引:3,自引:0,他引:3  
为研究河流沉积物与间隙水间营养盐的迁移规律,采集白塔堡河干流平水期上覆水和沉积物间隙水样品,分析N、P分布特征,计算沉积物-水界面N、P扩散通量,并对上覆水与间隙水中营养盐含量进行回归分析. 结果表明:上覆水和间隙水中ρ(TN)、ρ(NH3-N)和ρ(TP)均为农村带河段最低,城镇带和城市带河段较高. N、P的主要来源,农村带河段为农村灰水和面源污染,城镇带河段为生活污水和工业园排水,城市带河段为城市生活污水和工业废水. 间隙水中各营养盐质量浓度基本上都高于上覆水,空间分布趋势相似. NH3-N、NO2--N、NO3--N和PO43--P在沉积物-水界面的平均扩散通量分别为0.429、0.134、0.080和0.143μmol/(m2·d),表明沉积物是上覆水重要的N、P源. 表层沉积物间隙水与上覆水中的ρ(NH3-N)(R2=0.874,P=0.0002)和ρ(PO43--P)(R2=0.704,P=0.0005)均呈极显著相关,ρ(NO2--N)呈显著相关(R2=0.501,P=0.0020),ρ(NO3--N)的相关性(R2=0.353,P=0.0150)不显著,说明白塔堡河沉积物间隙水中的N主要以NH3-N形态向上覆水中扩散;而间隙水中的P主要以PO43--P形态向上覆水中扩散.   相似文献   

4.
南黄海表层沉积物中邻苯二甲酸酯的分布特征   总被引:1,自引:0,他引:1  
采用GC-FID分析测定了南黄海(SYS)表层沉积物样品中的4种邻苯二甲酸酯(PAEs),探讨了影响该类污染物分布的因素,并对其潜在生态危害做出初步判断。研究海域4种PAEs总含量在(311.4~6 156.5)×10-9之间,平均浓度为1 636.3×10-9,高值区主要分布在南黄海中部。二丁酯(DBP)检出浓度最高,介于(159.7~5 499.3)×10-9,二正辛酯(DnOP)浓度最低,为(2.2~81.1)×10-9,二甲酯(DMP)和二乙酯(DEP)含量平均值分别为159.5×10-9和74.2×10-9。4种PAEs浓度高值区同样主要集中在南黄海中部,不同组分之间的分布规律稍有差异。PAEs本身的性质、沉积物的特性、水动力条件以及周边环境都会影响PAEs的分布,其中沉积物中TOC的含量是影响其分布的重要因素之一。生态风险评价结果表明,大部分站位只有DBP超出警戒值,但低于其风险评估低值(ERL),初步判断南黄海海域目前这4种PAEs的生态危害较小。  相似文献   

5.
采用深水表层沉积物采样器采集海河干流8个断面的表层沉积物,测定不同粒径表层沉积物的总磷(TP)、总铁(TFe)和有机质(OM)含量,并采用多元线性回归分析方法对TP与TFe和OM含量进行相关性分析.结果表明:海河干流表层沉积物的颗粒组成除光华桥断面分布较均匀外,其余各断面主要以砂粒(>54%)为主;沉积物的TP含量为29.00~78.99 μmol/g,TFe含量为595.67~719.91 μmol/g,w(OM)为3.77%~8.79%;同一断面不同粉砂粒之间的TP,TFe和OM含量没有显著性差异(P>0.05),而不同断面之间的差异十分显著(P<0.01).TP与OM和TFe的相关分析结果显示:除金刚桥、外环河桥与中心桥外,其余断面的TP与TFe和OM均具有良好的相关性(R2>0.85).   相似文献   

6.
长江中下游浅水湖泊中总氮及其形态的时空分布   总被引:20,自引:2,他引:20  
分析和比较了长江中下游 3个浅水湖泊———太湖、巢湖和龙感湖夏、秋和冬季沉积物和上覆水中的总氮及其氮形态 ,描述了氮及其各形态在 3个湖泊中的时空分布特征 .结果表明 :空间上 ,无论是在表层沉积物还是在上覆水中 ,太湖中总氮的含量均高于其他 2个湖泊 ,且在太湖和巢湖都呈现西高东低的分布特征 .氨氮在沉积物和上覆水及溶解态硝态氮在上覆水中的分布与总氮分布趋势基本相同 .巢湖沉积物中氨氮浓度所占的比例稍高于太湖和龙感湖 .在不同季节 ,表层沉积物和上覆水中的总氮含量冬季高于秋季和夏季 ,表层沉积物中氨氮浓度在秋季最高 .巢湖和龙感湖上覆水中的溶解态硝态氮在冬季浓度较高 ,而在太湖西北部这种季节差异几乎没有 ,氨氮的浓度季节性差异也不十分明显  相似文献   

7.
岷江干流表层沉积物中磷形态空间分布特征   总被引:3,自引:2,他引:3  
近些年,岷江水体TP污染情况严重,而水体沉积物这一潜在污染源,对水质安全带来的威胁也不容忽视.为揭示岷江干流表层沉积物中磷形态的空间分布特征,于2016年12月,采集了岷江干流(阿坝~宜宾)表层沉积物样品,应用改进的SEDEX法对表层沉积物中的弱吸附态磷Ex-P、可提取态有机磷Org-P、铁结合态磷Fe-P、自生磷灰石磷Ca-P、碎屑磷De-P和非活性磷Res-P等6种磷形态质量浓度进行了测定.结果表明,岷江干流表层沉积物中总磷TP的质量浓度为522.17~979.22μg·g~(-1),已远超全国土壤磷素背景值700μg·g~(-1),表明岷江沉积物中TP浓度较高.从空间分布来看,岷江中游眉山河段中的表层沉积物是颗粒最细、有机质和TP质量浓度最高的区域.岷江干流表层沉积物磷的主要赋存形态为Ca-P和DeP,两者共占TP的质量分数为75%以上.同时,岷江干流表层沉积物中的生物可利用磷(Ex-P、Org-P和Fe-P总和)占TP的质量分数为10.31%~29.62%,其中以中游河段(尤其是眉山段、乐山段)质量浓度最高,这表明岷江中游河段表层沉积物中磷的生物可利用性较强,潜在环境风险较高.  相似文献   

8.
洪泽湖表层沉积物重金属分布特征及其风险评价   总被引:18,自引:10,他引:18  
余辉  张文斌  余建平 《环境科学》2011,32(2):437-444
为了揭示洪泽湖表层沉积物重金属的空间分布特征,用电感耦合等离子发射光谱法和原子荧光法测定了10个点位的重金属元素含量,分析了其空间分布特性,并评价了其潜在生态风险.洪泽湖表层沉积物中Cu、Zn、Pb、Cd、Cr、Hg和As平均含量分别为34.99、72.44、18.82、3.24、57.59、0.07和23.67 mg...  相似文献   

9.
基于2007—2012年连续对洞庭湖湘江入湖口至出湖口水域5个采样点——S1(樟树港)、S2(虞公庙)、S3(鹿角)、S4(君山)和S5(洞庭湖出口)表层沉积物中Cd、Hg、As、Cu、Pb、Cr和Zn 7种重金属质量分数分析,对该典型水域表层沉积物中重金属的空间分布特征进行了探讨,并采用潜在生态危害指数法对其生态风险进行评价. 结果表明:表层沉积物中w(Cd)、w(Hg)、w(As)、w(Cu)、w(Pb)、w(Cr)和w(Zn)分别为0.54~79.90、0.046~0.712、15.2~289.0、29.0~217.0、6.0~246.0、65.4~269.0和41.4~632.0 mg/kg,w(Cd)、w(Hg)、w(As)、w(Cu)、w(Pb)和w(Zn)沿程总体呈下降趋势,w(Cr)沿程变化较小;Cd具有很高生态风险,Hg具有中等生态风险,其余污染物具有低生态风险,不同污染物生态风险的大小顺序为Cd>Hg>As>Pb>Cu>Cr>Zn,各采样点的RI(潜在生态危害指数)为115.51~1 000.09,平均值为373.30,研究区域重金属总体具有高生态风险,其中S1采样点具有很高生态风险,不同采样点表层沉积物中重金属生态风险的大小顺序为S1>S2>S5>S4>S3;除Cr外,Cd、Hg、As、Cu、Pb和Zn主要来源于湘江,Cd和Hg是主要风险污染物,其中Cd为首要污染物,因此湘江重金属污染治理应以Cd为重点.   相似文献   

10.
太湖水体及表层沉积物磷空间分布特征及差异性分析   总被引:9,自引:4,他引:9  
通过对水体不同程度富营养化湖泊——太湖全湖40个位点的高密度采样分析,得到太湖水体及表层沉积物各污染因子在太湖的空间分布特征图,结果表明,太湖水体中SRP、TP、TN及沉积物中TOC、TN、TP及P的各形态等在空间上表现出明显的分异性,水体中污染物主要分布于竺山湾、五里湖、梅梁湾及太湖西部等湖区,TN、TP最低值为0.05、0.88mg·L-1.沉积物中Fe-P的分布与水体中TP类似,含量在29.13~258.31mg·kg-1之间变化.Ca-P除主要分布于南部太湖及东太湖外,西北部湖区也见大量蓄积,最高值达357.68mg·kg-1.OP的高值分布于西北部湖区,最高值达371.91mg·kg-1.沉积物中IP占TP的含量高于OP,最高值高出OP含量约50%.IP中Fe-P的比例虽然低于Ca-P,但与水体中SRP、TP之间的高度相关性(R为0.49、0.64),指示Fe-P的内源释放为太湖水体中磷的重要来源之一.而沉积物中TOC与C/N、TN、TP及P的各形态之间的显著相关性,表明了高有机质含量更利于对营养盐的蓄积埋藏.太湖水体及表层沉积物各指标空间上表现出如此明显的区域性差异,除受不同湖区入湖污染源直接作用外,还和各参数不同的生物地球化学行为有关.  相似文献   

11.
天津近岸表层沉积物重金属和放射性核素分布特征   总被引:1,自引:0,他引:1  
对渤海湾天津海域14个表层沉积物样品进行粒度、重金属和核素放射性活度测量,结果显示,沉积物组成以粉砂为主,其粒径在研究区横纵向上分别呈由南至北、由东至西逐渐变粗的分布特征.重金属元素含量为Cu:25.6~35.1mg/kg、Pb:44.1~67.7mg/kg、Zn:60~73.5mg/kg;210Pb活度为13.2~35.3Bq/kg,137Cs活度为0.05~1.28Bq/kg,重金属含量和放射性活度随粒径减小而增大,总体上呈由北至南逐渐增大的分布特征,在中部和南部分别呈由西北至东南和由西至东逐渐增大的分布特征.这主要是因为细颗粒组分对Cu、Pb、Zn、210Pb和137Cs的吸附作用大于粗颗粒组分,因此,其分布受渤海湾水流及其所导致的粒径变化所影响.  相似文献   

12.
渤海表层沉积物中DDTs、PCBs及酞酸酯的空间分布特征   总被引:9,自引:3,他引:9  
利用第2次全国海洋污染基线调查数据,研究渤海表层沉积物中DDTs、PCBs和酞酸酯的空间分布特征.结果表明:DDTs和PCBs的高值样点主要分布于秦皇岛近岸、辽东湾近岸和渤海湾近岸海区;酞酸酯的最高值和次高值样点分别出现在莱州湾近岸和辽东湾近岸,而秦皇岛近岸海区的平均水平高于其它海区.目前,渤海表层沉积物中PCBs和酞酸酯的含量相对较低,对周边底栖生物尚未构成威胁.另一方面,DDTs组成的比值关系显示秦皇岛近岸、渤海湾近岸和辽东湾近岸海区近期出现DDTs的输入,并且DDTs含量已超出相应的生态效应低值区间的标志水平,具有一定的生态风险.在渤海海区大多数样点,DDTs的主要代谢产物为厌氧条件下的DDD.  相似文献   

13.
为探究沉积物中总磷、总氮的时空分布特征及其影响因素,以渭河陕西段5个研究点为例,分别于2013年夏季(6月)和冬季(12月)进行两次采样,通过野外实验对水温、p H、电导率、溶解氧、流速等环境因子的测定,结合室内实验对沉积物中总磷、总氮含量的测定和粒度分析,研究沉积物中总磷、总氮的时空分布特征,以及各环境因子与其相关性.结果表明,大多数研究点沉积物中总磷、总氮含量在垂向上呈现先减小后增大再减小的趋势;在季节上呈现夏季含量高于冬季含量的趋势,其中各研究点夏季沉积物中总磷含量平均值为15.79 g·kg-1,总氮含量平均值为5.50 g·kg-1,而冬季沉积物中总磷含量平均值为5.91 g·kg-1,总氮含量平均值为2.46 g·kg-1;通过沉积物氮、磷元素含量与各环境因子的相关性分析,发现影响沉积物中总磷、总氮含量的环境因子主要有温度、p H、电导率和溶解氧.  相似文献   

14.
洞庭湖沉积物及上覆水体氮的空间分布   总被引:1,自引:0,他引:1  
2009年12月底在洞庭湖全湖20个采样点采样,通过测量该20个沉积物样和对应的20个上覆水样的总氮、氨氮、硝氮浓度和沉积物的含水率,揭示洞庭湖沉积物及其上覆水体氮的空间分布。研究表明:洞庭湖各点位沉积物全氮平均浓度为547.0mg/kg,与滇池、太湖和巢湖相比较低。洞庭湖各分区沉积物氮形态分布比例相差不大,主要形态为有机氮,占全氮的比例达59.9%。洞庭湖各点位沉积物上覆水体总氮平均浓度为2.45mg/L,已经达《地表水环境质量标准》劣V类水体的标准。洞庭湖各分区沉积物上覆水体氮形态分布不一,硝氮所占比例最大,为35.6%。其中东洞庭湖水体主要氮形态为氨氮,西、南洞庭水体主要氮形态为硝氮。造成这种差异的主要原因是东西洞庭湖的人类生活方式以及城市、工业发展水平的不同。  相似文献   

15.
黄河干流表层沉积物铁形态的分布特征及相关性分析   总被引:1,自引:0,他引:1  
应用颗粒物中铁的连续浸提技术研究了黄河干流表层沉积物中铁形态的分布特征及相关性,研究结果表明:表层沉积物中总铁(∑Fe)含量范围在14.01~30.98g/kg,最小值和最大值分别出现在黄河柳林段(H13)和渤海近海(H21);各形态铁中以残渣态(Fe-6)含量最高,占∑Fe比率92.55%~98.44%,有效态铁(BFe)含量仅占1.56%~6.98%,与∑Fe呈现显著正相关,并且三者含量高低沿程变化趋势一致;有机质(OM)与BFe、铁锰氧化物态铁(Fe-4)呈现显著正相关系,BFe与Fe-4呈现极显著正相关系,说明BFe含量主要受Fe-4和有机质的控制;黄河水体总颗粒物(TPM)浓度增高,如黄河中游大禹渡段H15和三门峡段H17,表层沉积物∑Fe与Fe-1含量高,TPM浓度降低,如黄河上游乌海段H7和三盛公段H8,表层沉积物∑Fe与Fe-1含量低,说明黄河流域广泛的人工筑坝,导致水体TPM浓度改变,对黄河铁循环产生了不可忽视的影响.  相似文献   

16.
根据2005年至2011年的监测结果,分析了淀浦河中下游河段的氨氮、总氮和总磷近几年污染变化趋势,并探讨了氨氮、总氮和总磷的相关性。结果表明,淀浦河总氮和总磷的年均浓度均超过水体富营养化的临界浓度,水体富营养化严重。氨氮、总氮和总磷相互之间存在显著相关性,可以通过氨氮、总氮和总磷中某一参数的测定,确定其他两个参数的数值范围,进而确定测定时的稀释倍数,有利于提高监测效率。  相似文献   

17.
本研究采用2008年和2017年围头湾海域表层沉积物中Hg和As的含量数据,分析评价了其空间分布、污染状况和潜在生态风险。研究结果表明:近10年来,围头湾海域表层沉积物中Hg平均含量有所减少,As平均含量有所增加,变化趋势与水体、底栖生物中相应污染因子的变化一致。围头湾表层沉积物中Hg和As的地质累积指数均小于0,总体污染负荷指数小于1,污染程度为无污染;单金属潜在生态危害系数均小于40,生态风险等级为低等级;从空间分布上看,围头湾表层沉积物中Hg和As含量与区域发展格局相对应,2008年高值区主要集中在内湾,随着内湾的环境整治和海洋生态修复,2017年该海域Hg和As含量有所降低,高值区向外湾东南侧新增工业园沿岸海域转移。  相似文献   

18.
以南京玄武湖和河海大学东湖为例,采取钼酸铵分光光度法和SMT分级提取法测定湖底沉积物和上覆水中总磷和各形态磷含量,以探究不同的湖底沉积物与水体中磷含量的分布及其关联性。试验结果表明:湖底沉积物中磷含量受人为作用、植被情况、水力条件、地理位置等因素影响,OP含量远高于IP含量,IP中以NaOH-P为主体,约占40%~50%,HCl-P含量较少但更稳定,不易被固定吸附;上覆水体中TP含量与湖底沉积物中TP、AdsP、NaOH-P含量呈明显正相关关系,与OP和HCl-P含量无明显相关性,表明湖泊沉积物-水界面磷交换过程中以活性磷占主要交换量。该研究表明湖底沉积物磷负荷与水体磷含量密切相关,为从内源治理水体富营养化提供了理论依据和研究方向。  相似文献   

19.
程昕煜  杨丽虎  宋献方 《环境科学》2023,44(8):4344-4352
为探究我国白洋淀淡水环境中微塑料的赋存特征,于2021年10月通过野外采样、实验室预处理、显微镜观察和激光红外光谱测定等方法鉴定了淀区10份上覆水及10份沉积物样品中微塑料的丰度分布、形状、粒径和聚合物类型,并通过Stokes沉降公式研究了微塑料在上覆水-沉积物界面的沉降规律,对其污染特征及潜在来源进行分析.结果表明,淀区上覆水及沉积物中微塑料丰度范围分别为474~19 382 n·m-3和95.3~29 542.5 n·kg-1,平均值为6 255.4 n·m-3和11 088 n·kg-1.上覆水中的微塑料主要聚合物为聚对苯二甲酸乙二醇酯[PET,(17.20±0.26)%],沉积物中微塑料以氯化聚乙烯[CPE,(46.11±1.30)%]为主.淀区内微塑料的沉降速度从0.079 3~111.754 7 mm·s-1不等,粒径大的颗粒沉降速度较高,易沉降并保留在沉积物中.研究区微塑料污染主要来源为洗涤废水产生的纺织纤维排放,船舶漆、船舶橡胶和建筑材料磨损等过程.  相似文献   

20.
大亚湾表层沉积物间隙水与上覆水中营养盐分布特征   总被引:8,自引:1,他引:8  
通过2007年4月和8月2次对大亚湾内13个站位的采样分析,探讨了表层沉积物间隙水和上覆水中营养盐含量的时空分布特征,估算了沉积物一海水界面营养盐的扩散通量,并对间隙水和上覆水中的营养盐含量进行了相关性分析.结果表明,大部分表层沉积物间隙水中营养盐含量远高于上覆水,但两者不具有相同的含量分布趋势.PO34-P、SiO23-Si、NH4 4 -N、NO-2-N和NO-3-N在沉积物-海水界面的平均扩散通量分别为9.22、444.99、13.49、20.71、8.99p,mol·m-2·d-1.相关性分析表明,营养盐在间隙水和上覆水中的含量均无明显相关性,说明间隙水中赋存营养盐的浓度并不是其上覆水中营养盐含量的决定因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号