首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Glyphosate, which is commercially available as Roundup®, was the widely used herbicide in Sri Lanka until 2015 and is suspected to be one of the causal factors for Chronic Kidney Disease of unknown etiology (CKDu). This research, therefore, aims at studying the presence of glyphosate and Aminomethylphosphonic acid (AMPA) in different environmental matrices in CKDu prevalent areas. Topsoil samples from agricultural fields, water samples from nearby shallow wells and lakes, and sediment samples from lakes were collected and analyzed for glyphosate and AMPA using the LC/MS. Glyphosate (270–690 µg/kg) and AMPA (2–8 µg/kg) were detected in all soil samples. Amorphous iron oxides and organic matter content of topsoil showed a strong and a moderate positive linear relationship with glyphosate. The glyphosate and inorganic phosphate levels in topsoil had a strong negative significant linear relationship. Presence of high valence cations such as Fe3+ and Al3+ in topsoil resulted in the formation of glyphosate-metal complexes, thus strong retention of glyphosate in soil. Lower levels of AMPA than the corresponding glyphosate levels in topsoil could be attributed to factors such as the strong adsorption capacity of glyphosate to soil and higher LOQ in the quantification of AMPA. The glyphosate levels of lakes were between 28 to 45 µg/L; no AMPA was detected. While trace levels of glyphosate (1–4 µg/L) were detected in all groundwater samples, AMPA (2–11µg/L) was detected only in four out of nine samples. Glyphosate was detected in all sediment samples (85–1000 µg/kg), and a strong linear relationship with the organic matter content was observed. AMPA was detected (1–15 µg/kg) in seven out of nine sediment samples. It could be inferred that the impact on CKDu by the levels of glyphosate and AMPA detected in the study area is marginal when compared with the MCL of the USEPA (700 µg/L).  相似文献   

2.
A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method’s performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70–105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R2=0.9982) was obtained over the concentration range of 0.01–1.5?mg kg?1. The LOD was determined to be 0.002?mg kg?1 for rice and 0.004?mg kg?1 for maize. The LOQ was 0.01?mg kg?1 for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.  相似文献   

3.
Extraction and quantification of pesticide residue from the milk matrix at or below the established maximum residue limit (MRL) is a challenging task for both analytical chemists and the regulatory institutions to take corrective actions for the human health and safety. The main aim of the study is to develop a simple rapid and less expensive QuEChERS extraction and cleanup method for simultaneous analysis of 41 multiclass pesticide residue in milk by gas chromatography-electron capture detector (GC-ECD), followed by confirmation of the residues with gas chromatography-mass spectrometer (GC-MS). Effect of sorbent type, temperature, spiking concentration, matrix effect (ME), measurement uncertainty (MU), inter- and intra-assay repeatability, reproducibility of recovery, and trueness of the results were investigated to validate the effectiveness of the method. Limit of determination (LOD) and limit of quantitation (LOQ) for all the analytes ranged within 0.001–0.02 and 0.002–0.05 µg mL?1, respectively. The % recovery of all the pesticides ranged between 91.38 and 117.56% with relative standard deviation (RSD) below 2.79%. The MU for all the analytes was ≤29% of respective LOQs, and except for few pesticides, the ME was largely negative. The method fulfilled all the SANTE guidelines and thus can be extended for routine analysis of multiclass pesticide residue in milk.  相似文献   

4.
Tian H 《Chemosphere》2011,83(3):349-355
A sensitive method for determination of chloramphenicol, enrofloxacin and 29 pesticides residues in bovine milk by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. Residues of the targets were extracted from milk with acetonitrile, cleaned up by C18-SPE cartridge, and then determined by HPLC-MS/MS. The MS detection was operated in positive or negative ionization mode, depending on the compounds. For confirmation of each target compound, two precursor ion > product ion transitions were selected by multi-reaction monitoring mode (MRM). The method showed good linearity for all the tested compounds over the studied concentration range with correlation coefficient higher than 0.9910. Recoveries for the studied compounds at three spiked levels (0.05, 0.10, 0.19 mg kg−1) in bovine milk were in the range of 71-107% with RSDs not larger than 13.7%, except that recoveries of trifluralin ranged between 62% and 70% at the spiked levels. Limits of quantitation for the analytes were estimated to range between 0.03 × 10−3 and 14.5 × 10−3 mg kg−1. The proposed method was applied for the determination of the analytes residues in real samples. The found levels of the analytes in milk samples were lower than maximum residues levels (MRL).  相似文献   

5.
Method development and validation studies have been completed on an assay that will allow the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in human urine. The accurate determination of 2,4-D in urine is an important factor in monitoring worker and population exposure. These studies successfully validated a method for the detection of 2,4-D in urine at a limit of quantitation (LOQ) of 5.00 ppb (parts per billion) using gas chromatography with mass selective detection (GC/MSD). The first study involved the determination of 2,4-D in control human urine and urine samples fortified with 2,4-D. Due to chromatographic interference, a second study was conducted using 14C-2,4-D to verify the recoverability of 2,4-D from human urine at low levels using the GC/MSD method. The second study supports the results of the original data. The 2,4-D was extracted from human urine using a procedure involving hydrolysis using potassium hydroxide, followed by a liquid-liquid extraction into methylene chloride. The extracted samples were derivatized with diazomethane. The methylated fraction was analyzed by GC/MSD. Quantitation was made by comparison to methylated reference standards of 2,4-D. Aliquots fortified at 5-, 50-, and 500-ppb levels were analyzed. The overall mean recovery for all fortified samples was 90.3% with a relative standard deviation of 14.31%.  相似文献   

6.
Abstract

Glyphosate is the main herbicide currently used in the world due to wide applicability and efficiency in controlling weeds in many crops. However, its overuse may lead to undesirable impacts on the environment and to human health in the long run. This present study aimed to optimize and validate solid phase extraction (SPE) using an anionic resin for the simultaneous and direct determination of glyphosate and aminomethylphosphonic acid (AMPA) in water samples using high-performance liquid chromatography combined with inductively coupled plasma with triple quadrupole mass spectrometer (HPLC-ICP-MS/MS). The results showed that recovery percentage and relative standard deviation were 103.9?±?7.9 and 99.40?±?9.9% for glyphosate and AMPA, respectively. The validation certified that the method was precise, accurate, linear, and selective, with a limit of quantification of 1.09 and 0.29?μg L?1 for glyphosate and AMPA, respectively. The optimized methodology reached the concentration factor of 250 times and was successfully applied to analyze water samples from hydroponic cultivation of the eucalyptus seedlings. The results showed that the exudation process occurs at glyphosate doses starting from 2?L ha?1.  相似文献   

7.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT50 values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, 14C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 ± 0.002% and 0.005 ± 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

8.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT(50) values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, (14)C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 +/- 0.002% and 0.005 +/- 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

9.
Glyphosate is an herbicide used widely and increasingly since the early 1990s in production of many crops and in urban areas. However, knowledge on the transport of glyphosate and its degradation to aminomethylphosphonic acid (AMPA) in ecosystems receiving urban or agricultural runoff is lacking. Here we show that transport and attenuation of runoff-associated glyphosate and AMPA in a stormwater wetland differ and largely vary over time. Dissolved concentrations and loads of glyphosate and AMPA in a wetland receiving runoff from a vineyard catchment were assessed during three consecutive seasons of glyphosate use (March to June 2009, 2010 and 2011). The load removal of glyphosate and AMPA by the wetland gradually varied yearly from 75% to 99%. However, glyphosate and AMPA were not detected in the wetland sediment, which emphasises that sorption on the wetland vegetation, which increased over time, and biodegradation were prevailing attenuation processes. The relative load of AMPA as a percentage of total glyphosate increased in the wetland and ranged from 0% to 100%, which indicates the variability of glyphosate degradation via the AMPA pathway. Our results demonstrate that transport and degradation of glyphosate in stormwater wetlands can largely change over time, mainly depending on the characteristics of the runoff event and the wetland vegetation. We anticipate our results to be a starting point for considering degradation products of runoff-associated pesticides during their transfer in wetlands, in particular when using stormwater wetlands as a management practice targeting pesticide attenuation.  相似文献   

10.
Ferrari S  Mandel F  Berset JD 《Chemosphere》2002,47(2):173-182
An analytical method was developed to determine quantitatively 1-hydroxypyrene (OHP) in bovine urine samples. The procedure includes an enzymatic hydrolysis to cleave the conjugated metabolite, an enrichment step using solid phase extraction with a non-polar rinse step and elution with dichloromethane. A final clean-up on silicagel was performed before high-performance liquid chromatography (HPLC) analysis and fluorescence detection. Alternatively, HPLC and electrospray ionization in the negative ion mode applying selective ion monitoring acquisition revealed to be a highly sensitive detection method allowing the quantitation of low pg of OHP in the urine samples. The method was successfully applied to the determination of OHP in bovine urine samples from animals living in urban and rural areas. Urine concentrations of OHP were significantly higher (median 8.6 microg l(-1)) of bovines living close to a highway.  相似文献   

11.
Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as ‘practically non-toxic and not an irritant’ under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg?1 body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.  相似文献   

12.
The present study reports concentrations of polybrominated diphenyl ethers (PBDEs) and organochlorines (OCs) in human breast milk from Indonesia covering urban, suburban and rural areas. PBDEs were detected in all the samples of the present study with total concentrations ranging from 0.49 to 13 ng/g lipid wt. Geographical distribution showed that concentrations of PBDEs were relatively uniform (p>0.05) and the levels were in the same order as those in Japan and some European countries, but were one or two order lower than North America. When compared to OCs, the level of total PBDEs was lower. The congener pattern was in accordance with other studies on human matrices, in which BDE-47 was the most abundant congener. Variations of PBDE congeners in human breast milk were further discussed to elucidate the potential exposure source(s) and pathways.  相似文献   

13.
H. Beck  A. Dro   W. Mathar 《Chemosphere》1989,19(12):1805-1810
Samples of adipose tissue from 7 male persons and 10 samples of human milk were analyzed for 3,3′,4,4′-tetrachlorobiphenyl by HRGC-HRMS. The levels found are in the lower ppt-range on a fat weight basis  相似文献   

14.
Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that of glyphosate and is still unknown. Greenhouse studies were conducted at Stoneville, MS to determine the effects of AMPA on plant growth, chlorophyll content, photosynthesis, nodulation, nitrogenase activity, nitrate reductase activity, and shoot nitrogen content in GR and GS soybeans. AMPA was applied to one- to two-trifoliolate leaf stage soybeans at 0.1 and 1.0 kg ha(-1), representing a scenario of 10% and 100% degradation of glyphosate (1.0 kg ae ha(-1) use rate) to AMPA, respectively. Overall, AMPA effects were more pronounced at 1.0 kg ha(-1) than at 0.1 kg ha(-1) rate. Visual plant injury (18-27%) was observed on young leaves within 3d after treatment (DAT) with AMPA at the higher rate regardless of soybean type. AMPA injury peaked to 46-49% at 14 DAT and decreased to 17-18% by 28 DAT, in both soybean types. AMPA reduced the chlorophyll content by 37%, 48%, 66%, and 23% in GR soybean, and 17%, 48%, 57%, and 22% in GS soybean at 3, 7, 14, and 28 DAT, respectively. AMPA reduced the photosynthesis rate by 65%, 85%, and 77% in GR soybean and 59%, 88%, and 69% in GS soybean at 3, 7, and 14 DAT, respectively, compared to non-treated plants. Similarly, AMPA reduced stomatal conductance to water vapor and transpiration rates at 3, 7, and 14 DAT compared to non-treated plants in both soybean types. Photosynthesis rate, stomatal conductance, and transpiration rate recovered to the levels of non-treated plants by 28 DAT. Plant height and shoot dry weight at 28 DAT; nodulation, nitrogenase activity at 10 DAT, and nitrate reductase activity at 3 and 14 DAT were unaffected by AMPA. AMPA reduced root respiration and shoot nitrogen content at 10 DAT. These results suggest that a foliar application of AMPA could indirectly reduce photosynthesis through decreased chlorophyll content in GR and GS soybean up to 14 DAT, but affected plants can recover to normal growth by 28 DAT.  相似文献   

15.
Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide.  相似文献   

16.
Glyphosate is a widely used non-selective herbicide. Leaching of glyphosate (N-(phosphonomethyl)glycine) and/or its metabolite AMPA (aminomethylphosphonic acid) was studied in four lysimeters, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimeters had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with a mixture of 14C-labelled glyphosate and unlabelled glyphosate, while lysimeter 5 and 6 were sprayed with unlabelled glyphosate. The spraying took place September 18, 1997. The total amount of glyphosate sprayed onto each lysimeter was 40 mg, corresponding to 0.8 kg active ingredient per ha. The lysimeters were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 260 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. The mean yearly concentration of leached glyphosate and/or AMPA was significantly below 0.1 microg/l from both sets of lysimeters, and thus no significant difference between the two lysimeter sets was shown. However, in both sets of lysimeters several single findings at concentrations above 0.1 microg/l was seen, which might be due to the leaching of particle-bound compounds. A significant difference between the soil residual concencentrations of AMPA was seen, the higher concentration was found in the set of lysimeter where low-tillage had been practiced and where Round Up had been used several times in the years before sampling of the lysimeter soil.  相似文献   

17.
The levels of persistent organic pollutants (POPs) were determined in 50 samples of Korean human milk. POPs include organochlorine pesticides (OCPs) [aldrin, chlordanes, dieldrin, dichlorodiphenyltrichloroethanes (DDTs), endrins, heptachlors, hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), mirex, and toxaphenes] and marker PCBs (PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180). In all samples, p,p′-DDE were determined as 75.5–1115.3 ng/g fat. The compounds β-HCH and p,p’-DDT were detected at 72% and 60% of the samples, respectively. Chlordanes (nd–84.9 ng/g fat) heptachlors (nd–40.1 ng/g fat), HCB (nd–42.9 ng/g fat) and PCBs (nd–38.3 ng/g fat) were detected in several samples. The ratio of dichlorodiphenyltrichloroethylene (DDE)/DDT was 6.8, which explained that exposure of volunteers to DDT did not occur recently. Compared with the previous monitoring data, the level of marker PCBs generally decreased in the milk samples. The levels of OCPs are significantly correlated to the residential periods of the mothers but not with their dietary habits. Considering the daily intake of each OCPs, 18% of infants would ingest the amount of heptachlor exceeding the acceptable daily intake (ADI) proposed by World Health Organization (WHO). There was no sample surpassing the WHO ADI for DDTs, HCB and chlordanes.  相似文献   

18.
Chao HR  Wang SL  Lin TC  Chung XH 《Chemosphere》2006,62(11):1774-1785
The present study determined the residues of organochlorine pesticides (OCPs) in human milk collected in central Taiwan between December 2000 and November 2001. The OCPs were analyzed by GC/MS for 36 human milk samples from healthy women ranging between 20 and 36 years of age. The predominant OCPs were p,p′-DDE, p,p′-DDT, -CHL, heptachlor epoxide, heptachlor, β-HCH, and γ-HCH, with median levels of 228, 19, 7.4, 4.0, 2.3, 1.2, and 0.8 ng/g lipid, respectively. The residues of OCPs in human milk from central Taiwan were comparable to those described in results from Sweden, the United Kingdom, and Japan, and were significantly lower than those from investigations in Asian countries, including China, Thailand, Indonesia, and Vietnam. Low DDE/DDT ratio (mean = 13.6, SD = 6.54) indicated that residual OCPs in human milk mainly originate from past exposure. A notable decrease in DDT levels (∑ DDT = 333 ng/g lipid) in human milk was found in this study compared to results from the previous two decades (∑ DDT = 3595 ng/g lipid). Hypothetically, the level of -CHL was significantly associated with total TEQ levels in Taiwanese human milk because of the sources of food contaminant, i.e. animal fat. Based on low OCP levels in Taiwanese human milk and low estimated median daily intake of total DDTs for a breastfed infant (1358 ng/kg/day) with the assumption of an infant weighting 4 kg and consuming 699 g milk per day in the first month after birth, the Taiwanese policy of breast-feeding promotion was supported.  相似文献   

19.
Several different Advanced Oxidation Processes (AOPs) including ozonation at pH 6.5 and 10, photolysis and heterogeneous photocatalysis using TiO2 as semiconductor and dissolved oxygen as electron acceptor were applied to study the degradation of glyphosate (N-phosphonomethyl glycine) in water. The degree of glyphosate degradation, the reactions kinetic and the formation of the major metabolite, aminomethyl phosphonic acid (AMPA), were evaluated. Ozonation at pH 10 resulted in the maximum mineralization of glyphosate. It was observed that under the experimental conditions used in this study the degradation of glyphosate followed the first-order kinetics. The half-life obtained for glyphosate degradation in the O3/pH 10 process was 1.8 minutes.  相似文献   

20.
This paper reviews the recent scientific literature on PCDDs, PCDFs and dioxin-like PCBs in human milk. All the papers reporting levels of these contaminants in human breast milk published from January 2000 to January 2009 and available on the www.sciencedirect.com web site were identified and included. The aim was (1) to study levels of PCDDs, PCDFs and PCBs in human milk in mothers from different geographical areas and assess infant exposure to these contaminants; (2) to study the effect of variables such as the mother’s age, number of deliveries, dietary and smoking habits and her own nutrition in infancy, and the environment, on levels of the contaminants in breast milk; (3) to study time patterns, and (4) to identify data gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号