首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Celosia trigyna, which belongs to the plant family Amaranthaceae, is a plant used in traditional medicine to treat several conditions such as sores, chest pains, diarrhoea and menstrual cramps in many countries in Africa. It is also consumed by the local people in Nigeria as soups, sauces and stews. In this study, the distribution and bioaccumulation of the elements in C. trigyna species and growth soil from the western and northern regions of Nigeria was investigated to determine the effects of geographical location on the uptake of elements by the plant. Elemental concentrations in the leaves from the western region were found to be in decreasing order of Ca?>?Mg?>?Fe?>?Mn?>?Zn?>?Cu?>?Pb?>?As?>?Ni. Concentrations of elements in the leaves from the northern region were found to be in decreasing order of Ca?>?Mg?>?Fe?>?Mn?>?Zn?> Cu?>?As?>?Pb?>?Ni?>?Co?>?Cd. Proximate analysis of leaves from both regions compared well with the recommended dietary allowance making the leaves safe for human consumption. Principal component analysis was used to group elements having the same sources irrespective of their geographical locations. Cd, Co and Cr were not detected in the leaves from the western region. Concentrations of As and Pb were above maximum permissible limits in both regions, while Ayegunle and Bida (in the northern region) had the highest concentrations of Cd. The high level of these toxic metals may be attributed to anthropogenic activities. It is therefore important that the Nigerian agricultural extension system emphasizes the dangers of heavy metal contamination in leafy vegetables to farmers. Activities of the manufacturing industries in the study area should be adequately monitored under standard environmental protection laws.  相似文献   

2.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

3.
In this study, the elemental distribution of essential and toxic elements in the soil and fruits of the indigenous plant species, Mimusops caffra, from ten sites along the KwaZulu-Natal east coast was investigated using inductively coupled plasma-optical emission spectrometry. This was done to determine the nutritional value of the fruits as well as to evaluate the impact of soil quality on elemental uptake by the plant. The elemental concentrations in the fruits (in descending order) were found to be K > Na > Ca > Mg > Si > Al > Fe > Zn > Mn > Ni > Cr > Cu > Pb > Mo > Sb > As > Se > V > Cd > Co. The results show that approximately 10 g of fruit would contribute more than 85% towards the recommended dietary allowance for Fe and Si for most adults. The proximate chemical composition revealed the fruits to contain approximately 84% moisture, 4.7% ash, 6.9% protein, 1.7% oil and 2.7% carbohydrates. The study indicates that the fruits of this indigenous plant species are a good source of essential elements with low levels of potentially toxic elements (Pb, As and Cd) which makes the plant a good indigenous food source especially for vulnerable communities that need food security.  相似文献   

4.
Ficussur (Moraceae) is an indigenous medicinal plant with a wide distribution in Africa. In this study, the nutritional potential fruit of this indigenous plant to meet domestic food demands and reduce food insecurity in KwaZulu-Natal. South Africa, was investigated. The proximate composition and concentrations of metals in the edible fruits collected from eight different sites in KwaZulu-Natal were determined to assess for nutritional value and the concentrations of metals in the growth soil was determined to evaluate the impact of soil quality on elemental uptake. The fruits contained high levels of moisture (88.8%) and carbohydrates (65.6%). The concentrations of elements in the fruits were found to be in decreasing order of Ca>Mg >Fe >Zn>Cu >Mn> Se with low levels of toxic metals (As, Cd, Co and Pb). This study shows that the consumption of the fruits of F. sur can contribute positively to the nutritional needs of rural communities in South Africa for most essential nutrients without posing the risk of adverse health effects.  相似文献   

5.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   

6.

Dark septate endophytes (DSE) are widely distributed in plant roots grown in stressful habitats, especially in heavy metal-polluted soils. But little is known about the physiological interactions between DSE and plants under heavy metal stress. In the present study, the growth, Cd content, and physiological response of Zea mays L. to a root-colonized DSE, Exophiala pisciphila, were analyzed under Cd stress (0, 5, 10, 20, and 40 mg/kg) in a sand culture experiment. Under high Cd (10, 20, and 40 mg/kg) stress, the DSE colonization in roots increased the maize growth, kept more Cd in roots, and decreased Cd content in shoots. The DSE colonization improved the photosynthesis and induced notable changes on phytohormones but had no significant effect on the antioxidant capability in the maize leaves. Moreover, there were significant positive correlations between the gibberellic acid (GA) content and transpiration rate, zeatin riboside (ZR) content, and photosynthetic rate in maize leaves. These results indicated that the DSE’s ability to promote plant growth was related to a decrease on Cd content and the regulation on phytohormone balance and photosynthetic activities in maize leaves.

  相似文献   

7.

The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

8.
Mature specimens of Parasol Mushroom were collected annually in the outskirts of the Siemiany (2000–2003) and Rafa (2001–2003) sites in the northern part of Poland to examine temporal variations and similarities in the composition of 20 chemical elements. Analysis was done under the same condition and using well-validated analytical methods. Elements were determined by inductively coupled plasma–atomic emission spectroscopy and cold vapour–atomic absorption spectroscopy (Hg). The ranges of Ag, Al, Ba, Ca, Cd, Co, Cu, Cr, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn concentrations in the caps of fruiting bodies were similar (p > 0.05; Mann-Whitney U test) for both geographically distant sites, and these specimens from Rafa were more contaminated with Pb (p < 0.05; Mann-Whitney U test). The annual collections of caps in the Siemiany site varied in Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na, Rb and Sr and contents (0.05 < p < 0.001), while they were similar in Cr, K, Mg, Mn, Ni, P, Pb and Zn (p > 0.05; Mann-Whitney U test). The annual collections of specimens from the Rafa site varied in contents of Ag, Al, Ba, Ca, Fe, Hg, K, Mg, Mn, P, Rb and Zn (p > 0.05), while they were similar in Cd, Co, Cr, Cu, Na, Ni, Pb and Sr (p < 0.05). The results of this study imply that metallic elements content of Parasol Mushroom collected at the same undisrupted sites, and hence keeping the same geochemical condition for mushroom development and fructification (the same stands and probably the same mycelia), can fluctuate over the years or the life-span of mycelium. Hence, when assessing the nutritional value of essential metallic elements and status of non-essential or toxic metallic elements in Parasol's Mushroom caps (and probably also of other mushrooms species) to man, the possible fluctuation in contents over time have to be taken into account.  相似文献   

9.
Hu X  Zhang Y  Luo J  Xie M  Wang T  Lian H 《Chemosphere》2011,82(10):1351-1357
Foliar uptake of airborne lead is one of the pathways for Pb accumulation in plant organs. However, the approximate contributions of airborne Pb to plant organs are still unclear. In the present study, aerosols (nine-stage size-segregated aerosols and total suspended particulates), a wild plant species (Aster subulatus) and the corresponding soils were collected and Pb contents and isotopic ratios in these samples were analyzed. Average concentration of Pb was 96.5 ± 63.5 ng m−3 in total suspended particulates (TSP) and 20.4 ± 5.5 ng m−3 in the fine fractions of size-segregated aerosols (SSA) (<2.1 μm), higher than that in the coarser fractions (>2.1 μm) (6.38 ± 3.71 ng m−3). Enrichment factors show that aerosols and soils suffered from anthropogenic inputs and the fine fractions of the size-segregated aerosols enriched more Pb than the coarse fractions. The order of Pb contents in A. subulatus was roots > leaves > stems. The linear relationship of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb) among soil, plant and aerosol samples were found. Based on the simple binary Pb isotopic model using the mean 206Pb/207Pb ratios in TSP and in SSA, the approximate contributions of airborne Pb into plant leaves were 72.2% and 65.1%, respectively, suggesting that airborne Pb is the most important source for the Pb accumulation in leaves. So the combination of Pb isotope tracing and the simple binary Pb isotope model can assess the contribution of airborne Pb into plant leaves and may be of interest for risk assessment of the exposure to airborne Pb contamination.  相似文献   

10.
In April 1996 snowpack samples were collected from the surroundings of the ore roasting and dressing plant at Zapoljarnij and the nickel smelters at Nikel and Monchegorsk, Kola Peninsula, NW Russia. In the laboratory, filter residues of snowpack samples (fraction>0.45 μm) from 15 localities (close to the nickel processing centres) were chemically for precious metals (Rh, Pt, Pd, Au) and Te by graphite furnace atomic absorption spectrometry (GFAAS) analysis, and for Cu and Ni by ICP-MS. Values up to 2770 ng/l Pd, 650 ng/l Pt and 186 ng/l Au were found in the filter residues. Additionally, platinum-group elements (PGE) and Au contents in ore samples from Noril’sk1, as well as in technogenic products (“Cu–Ni-feinstein” and copper concentrate) processed at the Monchegorsk smelter complex, were analysed using flameless atomic absorption spectroscopy (FAAS) for comparison with results obtained from snow. Rh, Pt, Pd and Au distribution data show the presence of two ore components (Noril’sk and Pechenga). Concentrations of these metals decrease with distance from the industrial sources and with the prevailing wind direction (generally north–south). Microscopic investigations and electron microprobe analysis of polished sections of snow filter residues (>0.45 μm) also reveal differences between particles from the two sources.  相似文献   

11.
Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m?3) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p?>?0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m?3 air Hg were significantly lower than those exposed to 2 ng m?3 air Hg in late morning (p?<?0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m?3 air Hg were significantly higher than those exposed to 2 ng m?3 air Hg (p?<?0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g?1) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p?>?0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.  相似文献   

12.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000–12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20–400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   

13.

The uptake, translocation, and human bioaccessibility of metals originating from atmospheric fine particulate matters (PM) after foliar exposure is not well understood. Lettuce (Lactuca sativa L.) plants were exposed to micronic PbO, CuO, and CdO particulate matters (PMs) by the foliar pathway and mature plants (6 weeks old) were analyzed in terms of: (1) metal accumulation and localization on plant leaf surface, and metal translocation factor (TF) and global enrichment factor (GEF) in the plants; (2) shoot growth, plant dry weight (DW), net photosynthesis (Pn), stomatal conductance (Gs), and fatty acid ratio; (3) metal bioaccessibility in the plants and soil; and (4) the hazard quotient (HQ) associated with consumption of contaminated plants. Substantial levels of metals were observed in the directly exposed edible leaves and newly formed leaves of lettuce, highlighting both the possible metal transfers throughout the plant and the potential for human exposure after plant ingestion. No significant changes were observed in plant biomass after exposure to PbO, CuO, and CdO-PMs. The Gs and fatty acid ratio were increased in leaves after metal exposure. A dilution effect after foliar uptake was suggested which could alleviate metal phytotoxicity to some degree. However, plant shoot growth and Pn were inhibited when the plants are exposed to PbO, and necrosis enriched with Cd was observed on the leaf surface. Gastric bioaccessibility of plant leaves is ranked: Cd?>?Cu?>?Pb. Our results highlight a serious health risk of PbO, CuO, and CdO-PMs associated with consumption of vegetables exposed to these metals, even in newly formed leaves in the case of PbO and CdO exposure. Finally, the study highlights the fate and toxicity of metal rich-PMs, especially in the highly populated urban areas which are increasingly cultivated to promote local food.

  相似文献   

14.
Nitrogen isotopic composition of new, middle-aged and old camphor leaves in upper and lower canopies has been determined in a living area, near a motorway and near an industrial area (Jiangan Chemical Fertilizer Plant). We found that at sites near roads, more positive δ15N values were observed in the camphor leaves, especially in old leaves of upper canopies, and ?δ15N = δ15Nupper − δ15Nlower > 0, while those near the industrial area had more negative δ15N values and ?δ15N < 0. These could be explained by two isotopically different atmospheric N sources: greater uptake from isotopically heavy pools of atmospheric NOx by old leaves in upper canopies at sites adjacent to roads, and greater uptake of 15N-depleted NHy in atmospheric deposition by leaves at sites near the industrial area. This study presents novel evidence that 15N natural abundance of camphor leaves can be used as a robust indicator of atmospheric N sources.  相似文献   

15.

Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  相似文献   

16.
《Chemosphere》2007,66(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

17.
A field survey was conducted to evaluate soil metal pollution and endogenous trans-zeatin content in the leaves of plants growing at six sites in a metal-polluted area located in Gejiu, Yunnan, China. Five plant species were collected, and the physicochemical properties and concentrations of five metals in the soil were analyzed. The trans-zeatin content in plant leaves was measured by high-performance liquid chromatography. Based on the Nemerow pollution index, the six sites were classified into four levels of pollution (i.e., low, medium, high, and severely high). The degree of soil metal pollution was cadmium (Cd) > arsenic (As) > lead (Pb) > zinc (Zn) > copper (Cu). The leaf trans-zeatin content in Pteris vittata (an arsenic hyperaccumulator) increased significantly by 98.6 % in soil with a severely high level of pollution compared with soil at a low level of pollution. However, in non-hyperaccumulators Bidens pilosa var. radiata and Ageratina adenophora, a significant decrease in leaf trans-zeatin content of 35.6 and 87.6 %, respectively, was observed. The leaf trans-zeatin content in Artemisia argyi also decreased significantly by 73.6 % in high metal-polluted soil compared with that in medium metal-polluted soil. Furthermore, significant correlations were observed between leaf trans-zeatin content in Pteris vittata and As, Pb, and Cd concentrations in the soil; however, either no correlation or a negative one was observed in the other plant species. Therefore, a high content of trans-zeatin in the leaves of Pteris vittata may play an important role in its normal growth and tolerance to metals.  相似文献   

18.
In this study, the leaves of Quercus ilex L. were selected as possible bioaccumulators of polycyclic aromatic hydrocarbons (PAHs). Quercus is an evergreen plant that occurs widely in both urban and rural areas. Several sites (urban roadside, urban, urban park, suburban and rural) in and around Palermo city were investigated.The purpose of this research was to optimize analytical method for quercus leaves, investigate the degree of contamination in the urban area of Palermo by comparing PAH concentration in leaves of quercus from the several sites, establish distribution patterns and relate them to possible sources of PAHs. To this aim, the 16 recommended as priority pollutants by the Environmental Protection Agency (EPA) and perylene were analyzed. PAHs were positively correlated to atmospheric particulate gravimetrically determined on filters aspiring a known volume of air in the various stations.The analyses have been performed by gas chromatography coupled to mass spectrometry (GC–MS) in selected ion monitoring (SIM) mode. The total PAH content in the samples ranged from 92 to 1454 μg kg−1 d.w. The higher amounts of PAHs detected in leaves of quercus from the urban area of Palermo compared with the control site are diagnostic of air contamination, in particular in the zones with heavy traffic. The determination of PAHs in the leaves of quercus allows us, with very simple and fast procedures, to assess the quality of the air over a longer period, since PAHs are accumulated over the whole lifetime of the leaves, irrespective of atmospheric conditions at the moment of sampling.  相似文献   

19.

The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

20.
Chen  Hui  Mao  Wei  Shen  Yiqiu  Feng  Weiwei  Mao  Guanghua  Zhao  Ting  Yang  Lanqin  Yang  Liuqing  Meng  Chunfeng  Li  Yong  Wu  Xiangyang 《Environmental science and pollution research international》2019,26(24):24609-24619

Phthalates (PAEs) in drinking water sources such as the Yangtze River in developing countries had aroused widespread concern. Here, the water, suspended particulate matter (SPM), and sediment samples were collected from 15 sites in wet and dry seasons in Zhenjiang, for the determination of six PAEs (DMP, DEP, DIBP, DBP, DEHP, and DOP) using the solid-phase extraction (SPE) or ultrasonic extraction coupled with gas chromatography-mass spectrometry (GC-MS). The total concentrations of six PAEs (Σ6PAEs) spanned a range of 2.65–39.31 μg L?1 in water, 1.97–34.10 μg g?1 in SPM, and 0.93–34.70 μg g?1 in sediment. The partition coefficients (Kd1) of PAEs in water and SPM phase ranged from 0.004 to 3.36 L g?1 in the wet season and from 0.12 to 2.84 L g?1 in the dry season. Kd2 of PAEs in water and sediment phase was 0.001–9.75 L g?1 in the wet season and 0.006–8.05 L g?1 in the dry season. The dominant PAEs were DIBP, DBP, and DEHP in water and SPM, DIBP, DEHP, and DOP in sediment. The concentration of DBP in water exceeded the China Surface Water Standard. The discharge of domestic sewage and industrial wastewater might be the main potential sources of PAEs. The risk quotient (RQ) method used for the risk assessment revealed that DBP (0.01 < RQ < 1) posed a medium risk, while DIBP and DEHP (RQ > 1) posed a high environmental risk in water, DIBP (RQ > 1) also showed a high risk in sediment.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号