首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microwave enhanced advanced oxidation process (MW/H2O2-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H2O2-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H2O2-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H2O2-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.  相似文献   

2.
The microwave enhanced advanced oxidation process (MW/H2O2-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H2O2-AOP was conducted at a microwave temperature of 120°C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53–0.75 g H2O2/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS.  相似文献   

3.
Dairy manure, acidified using organic acids (acetic, oxalic, and citric acid) were treated with microwave enhanced advanced oxidation process (MW/H2O2-AOP). The effect of a mixture of oxalic acid and commonly used mineral acids (sulfuric and hydrochloric acid) on MW/H2O2-AOP was also examined. Substantial amounts of phosphorus were released under MW/H2O2-AOP, regardless of organic acid or mineral acid used. All three organic acids were good acidifying reagents; however, only oxalic acid could remove free calcium ion in the solution, and improve settleability of dairy manure. The MW/H2O2-AOP and calcium removal process could be combined into a single-stage process, which could release phosphate, solubilize solids and remove calcium from dairy manure at the same time. A mixture of oxalic acid and mineral acid produced the maximum volume of clear supernatant and had an ideal molar ratio of calcium to magnesium for effective struvite (magnesium ammonium phosphate) crystallization process. A single-stage MW/H2O2-AOP would simplify the process and reduce mineral acid consumption compared to a two-stage operation. The results of a pilot scale study demonstrate that MW/H2O2-AOP is effective in treating manure and recovering resource from dairy farms.  相似文献   

4.
The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H(2)O(2)-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H(2)O(2)-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H(2)O(2)-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.  相似文献   

5.
This study investigated the treatment of dairy manure using the microwave enhanced advanced oxidation process (MW-AOP) at pH 2. An experimental design was developed based on a statistical program using response surface methodology to explore the effects of temperature, hydrogen peroxide dosage and heating time on sugar production, nutrient release and solids destruction. Temperature, hydrogen peroxide dosage and acid concentration were key factors affecting reducing sugar production. The highest reducing sugar yield of 7.4% was obtained at 160°C, 0 mL, 15 min heating time, and no H2O2 addition. Temperature was a dominant factor for an increase of soluble chemical oxygen demand (SCOD) in the treated dairy manure. The important factors for volatile fatty acids (VFA) production were microwave temperature and hydrogen peroxide dosage. Temperature was the most important parameter, and heating time, to a lesser extent affecting orthophosphate release. Heating time, hydrogen peroxide dosage and temperature were significant factors for ammonia release. There was a maximum of 96% and 196% increase in orthophosphate and ammonia concentration, respectively at 160°C, 0.5 mL H2O2 and 15 min heating time. The MW-AOP is an effective method in dairy manure treatment for sugar production, nutrient solubilisation, and solids disintegration.  相似文献   

6.
Abstract

The microwave enhanced advanced oxidation process (MW-AOP) was used to treat dairy manure in a continuous-flow 915?MHz microwave wastewater treatment system. The treatment efficiency increased with an increase in temperature, as well as hydrogen peroxide dosage. The settling property was also improved in all treated sets, regardless of temperature applied. The system operated at temperatures >100?°C had a much higher soluble chemical oxygen demand than at temperatures <100?°C. The highest soluble carbonaceous compounds, orthophosphate and ammonia were obtained at 110?°C and 0.6%H2O2 per % of total solids content. The process should be operated at higher temperatures and higher hydrogen peroxide dosages for maximizing solids disintegration, nutrient release and energy efficiency. An energy fingerprint correlating the cumulative energy consumption and temperature rise was developed. The results demonstrated that the custom designed MW-AOP system is suitable for the effective treatment of dairy manure. The system can readily be scaled up and integrated into a dairy farm manure treatment and resource recovery system.  相似文献   

7.
微波辐射Bi2O3/沸石-H2O2体系降解废水中的硝基苯   总被引:2,自引:1,他引:1  
研究了微波辐射下,以负载于沸石上的三氧化二铋为催化剂,以双氧水为氧化剂的催化氧化体系处理硝基苯工艺。通过单因素实验法,从反应催化剂负载量、pH、双氧水用量、微波功率、反应时间、催化剂用量等方面初步考察了硝基苯在该体系中的催化氧化效果。在氧化铋负载量3%(质量比),pH=2,2 mL 30%双氧水,火力为中火,催化剂投加量为0.7 g,反应2 min,对降解过程所得的中间产物和终产物进行了分析。结果表明,该体系对硝基苯的去除率能够达到99.2%,COD去除率为73.91%。  相似文献   

8.
为了有效地改善养猪场污水的质量,以H2O2为药剂,对污水进行了水浴加热和超声波辅助的对比实验,考察了超声波发生器输出端电流强度、处理时间、H2O2用量对污水的COD、氨气及颜色的影响,并进行正交实验优化。结果表明,超声波协同H2O2处理养殖污水是一种切实可行的方法,超声波协同H2O2处理污水的最佳工艺条件:电流0.7 A、处理时间2 min、H2O2用量3%,在此条件下降低COD量可达95%以上,氨氮的含量可降至14~15 mg/L,氨臭味大大得到了改善,并将原污水由黑色变为浅黄色。  相似文献   

9.

Both the advanced oxidation process (AOP) using a combination of hydrogen peroxide addition and microwave heating (H2O2/microwave), and the microwave heating process were used for solubilization of phosphorus from liquid dairy manure. About 80% of total phosphate was released into the solution at a microwave heating time of 5 min at 170°C. With an addition of H2O2, more than 81% of total phosphate could be released over a reaction period of 49 h at ambient temperature. The AOP process could achieve up to 85% of total phosphate release at 120°C. The results indicated that both the microwave, and the AOP processes could effectively release phosphate from liquid dairy manure. These processes could serve as pretreatments for phosphorus recovery from animal wastes, and could be combined with the struvite crystallization process to provide a new approach in treating animal wastes.  相似文献   

10.
The microwave-enhanced advanced oxidation process was used to treat fish silage for nutrient release and solids reduction prior to its use as a fertilizer for greenhouse operations. Fifteen sets of experiments with varying hydrogen peroxide dosages and treatment temperatures were conducted to evaluate the effectiveness of the process on the solubilization of fertilizer constituents. It was found that up to 26% of total Kjeldahl nitrogen could be released as ammonia with 6% hydrogen peroxide dosage at 170°C. An increase of nitrate/nitrite concentration was observed with higher hydrogen peroxide dosage and higher microwave temperature; the highest concentration of 10.2 mg L? 1 nitrates/nitrites was achieved at at 170°C and 6% H2O2 dosage. Up to 20 ± 9.5% of total chemical oxygen demand was reduced at temperatures between 120 and 170°C. Large quantities of volatile fatty acids were generated at lower temperatures, corresponding to an increase in soluble chemical oxygen demand, but not at higher temperatures. The treatment of fish silage using the microwave-enhanced advanced oxidation process appears to be promising.  相似文献   

11.
采用臭氧辅助光芬顿法处理电镀添加剂生产废水,考察双氧水、FeSO4·7H2O、pH和反应时间等因素对废水COD和UV254去除的影响。实验结果表明,pH=4,臭氧通入量为0.25 g,双氧水的投加量93.3 mL/L,FeSO4·7H2O投加量为5.3 g/L,最佳反应时间为30 min,COD和UV254去除率分别达到92.64%和87.95%。这表明,臭氧辅助光芬顿法对电镀添加剂生产废水处理效果显著,处理时间大大减少。  相似文献   

12.
The H2O2/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M1, M2, and M3 following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H2O2. Subsamples of M1, M2, and M3 were then used to create samples M1,E, M2,E and M3,E in which the H2O2 had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M1,E, which was collected early in the photodegradation process, caused 52% inhibition, while M3,E, which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M2, M3, and in M1,E, M2,E and M3,E. The lowest percentages of enzymatic inhibition were observed in samples without removal of H2O2: 13.96% (AChE) and 16% (BChE) for M2, and 24.12% (AChE) and 13.83% (BChE) for M3. These results show the efficiency of the H2O2/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M2 (11 ± 1 mg a.e. L?1 glyphosate and 11 ± 1 mg L?1 H2O2) could be used as a final point for glyphosate treatment with the H2O2/UV process.  相似文献   

13.
Background, aim, and scope  The pulp and paper industry is the sixth largest polluter discharging a variety of gaseous, liquid, and solid wastes into the environment. Effluents from bleached Kraft mill effluents (BKME) are polluting waters to a great extent These effluents cause considerable damage to the receiving waters if discharged untreated since they have high levels of biological oxygen demand (BOD), chemical oxygen demand (COD), chlorinated compounds (measured as AOX), suspended solids (mainly fibers), fatty acids, tannins, resin acids, lignin and its derivatives, sulfur and sulfur compounds, etc. This study aimed to remove adsorbed organic halogen (AOX), total nitrogen, and lignin-degrading products in the wastewater (4,500 m3/h) from the paper mill in the pulp and paper industry, which is discharged to sea from a plant located in western Turkey. Materials and methods  The photocatalytic degradation of AOX, total nitrogen, and chlorinated lignin in BKME have been investigated in different parameters, such as time, H2O2 and TiO2 concentration. In addition, for investigating the effect of chlorine on the removal of lignin, pure lignin solution was prepared in equal amounts to chlorinated lignin degradation products found in BKME. The same experiments were conducted for this solution. Experiments were carried out in photocatalytic reactor made of Pyrex glass. The mercury lamp was used as a radiation source. All irradiation was carried out under constant stirring. The existence of dissolved O2 is an important factor which increases the photocatalytic degradation. Hence, we used an air pump for the aeration of the wastewater solutions. The temperature of the wastewater was controlled and adjusted to 25°C by thermostat pump in conjunction with a cooler. At the end of all experiments, AOX, total nitrogen and lignin concentrations were analyzed according to standard methods. All experiments were performed in duplicate and average values were used. Results and discussion  When the effect of H2O2 and time were investigated, it was observed that the AOX concentration increased from 3.0 to 11.0 mg/L by only UV. However, when H2O2 was added, AOX concentration decreased from approximately 3.0 to 0.0 mg/L. The optimal conditions for the removal of AOX appear to be an initial H2O2 concentration of 20.0 mL/L and reaction time of 50 min. In addition, at the same experiment conditions, it was seen that the total nitrogen concentration decreased from 23.0 to 15.0 mg/L by only UV and by increasing H2O2 concentration, the concentration of 20.0 mL/L H2O2 appears to be optimal (9.0 mg/L). The AOX, total nitrogen and lignin degradation products and pure lignin go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. The kinetics for the degradation of AOX, total nitrogen and lignin degradation products followed a pseudo-first order law with respect to the products, and the degradation rates (min−1) for the UV/TiO2/H2O2 system were higher than that of the corresponding values for the UV/H2O2 system. Conclusions  The AOX, total nitrogen and lignin concentration go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. It was found that the UV/TiO2/H2O2 system has proved capable of the degradation of total nitrogen as well as chlorinated and degraded lignin in BKME. Recommendations and perspectives  The photocatalytic process can be considered a suitable alternative for the remove of some compounds from the BKME. Nevertheless, further studies should be carried out to confirm the practical feasibility of BKME. Another result obtained from the study is that pre-purification carried out with UV/TiO2/H2O2 photocatalytic process may constitute an important step for further purification processes such as adsorption, membrane processes, etc.  相似文献   

14.
This study investigated the treatment of dairy manure using the microwave enhanced advanced oxidation process (MW-AOP) at pH 2. An experimental design was developed based on a statistical program using response surface methodology to explore the effects of temperature, hydrogen peroxide dosage and heating time on sugar production, nutrient release and solids destruction. Temperature, hydrogen peroxide dosage and acid concentration were key factors affecting reducing sugar production. The highest reducing sugar yield of 7.4% was obtained at 160°C, 0 mL, 15 min heating time, and no H(2)O(2) addition. Temperature was a dominant factor for an increase of soluble chemical oxygen demand (SCOD) in the treated dairy manure. The important factors for volatile fatty acids (VFA) production were microwave temperature and hydrogen peroxide dosage. Temperature was the most important parameter, and heating time, to a lesser extent affecting orthophosphate release. Heating time, hydrogen peroxide dosage and temperature were significant factors for ammonia release. There was a maximum of 96% and 196% increase in orthophosphate and ammonia concentration, respectively at 160°C, 0.5 mL H(2)O(2) and 15 min heating time. The MW-AOP is an effective method in dairy manure treatment for sugar production, nutrient solubilisation, and solids disintegration.  相似文献   

15.
采用O3/H2O2法对嘧啶废水进行处理,考察了不同反应条件对嘧啶和COD去除率的影响,并对O3/H2O2降解嘧啶的反应机制和动力学进行了初步探讨.实验结果表明,在pH值为11,反应时间为70 min,O3流量为4g/h,H2O2投加量为50 mmol/L的条件下,废水的嘧啶和COD的去除率分别达到86.46%和74.9...  相似文献   

16.
This study presents the degradation of phenol by the photoelectro-Fenton method using nano zero-valent iron (nZVI) immobilized in polyvinyl alcohol–alginate beads. The effect of nZVI loading, H2O2 concentration, pH, and initial phenol concentration on phenol degradation and chemical oxygen demand reduction was studied. The scanning electron microscope images of the nZVI beads were used to analyze their morphology, and their diameters were in the range of 500–600 μm. The concentration of nZVI in the beads was varied from 0.1 to 0.6 g/L. Fe2+ leakage of 1 and 3 % was observed with 0.5 and 0.6 g/L of nZVI, respectively, and the observed beads' fracture frequency was 2 %, which confirmed the stability of the beads. The optimum operating conditions that arrived for better degradation were 0.5 g/L of nZVI, pH 6.2, and 400 mg H2O2/L. The treatment of effluent by this method increased the biodegradability index of the effluent, and the degradation data were found to follow pseudo first-order kinetics.  相似文献   

17.
微波辅助双氧水氧化降解水中磺胺二甲嘧啶   总被引:1,自引:0,他引:1  
赵方  张从良  王岩 《环境工程学报》2012,6(11):4074-4078
采用微波辐照技术辅助双氧水氧化降解水中磺胺二甲嘧啶(SM2),研究了微波辅助双氧水氧化降解水中SM2的影响因素。结果表明,单纯使用微波辐照并不能显著降解SM2,而微波辐照可显著促进双氧水对SM2的氧化作用,提高SM2的降解率。在初始浓度为50 mg/L,微波功率为900 W,加入0.25 mL质量分数为30%的双氧水,pH值为4的条件下辐照6 min,SM2的降解率可达96.5%,COD去除率为72%。  相似文献   

18.
Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO2) catalyst was investigated. The effects of feed flow rate, TiO2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R2 ~ 0.964). The addition of 1 mL min?1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ~50 mg L?1, TiO2 ~5 mg L?1 and feed flow rate ~82.5 mL min?1. Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.  相似文献   

19.
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 2? and HCO3 ? as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbonate alkalinity, one just carrying 1,4-dioxane (S1), and another one including 1,4-dioxane and 2-methyl-1,3-dioxolane (S2), were treated under optimized conditions and subsequently subjected to biodegradability assays with a Pseudomonas putida culture. Electrooxidation was compared with ozone oxidation (O3) and its combination with hydrogen peroxide (O3/H2O2). Regarding the experimental design, the optimal compromise for maximum COD removal at minimum energy consumption was shown at the maximum tested concentrations of SO4 2? and HCO3 ? (41.6 and 32.8 mEq L?1, respectively) and the maximum selected initial COD (750 mg L?1), applying a current density of 11.9 mA cm?2 for 3.8 h. Up to 98 % of the COD was removed in the electrooxidation treatment of S1 effluent using 114 kWh per kg of removed COD and about 91 % of the COD from S2 wastewater applying 49 kWh per kg of removed COD. The optimal biodegradability enhancement was achieved after 1 h of electrooxidation treatment. In comparison with O3 and O3/H2O2 alternatives, electrochemical oxidation achieved the fastest degradation rate per oxidant consumption unit, and it also resulted to be the most economical treatment in terms of energy consumption and price per unit of removed COD.  相似文献   

20.
The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (EEo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the EEo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号