首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
上覆水营养盐浓度对底泥氮磷释放的影响   总被引:2,自引:0,他引:2  
采用校园水体底泥进行上覆水营养盐浓度对底泥释放量之间的关系研究。结果表明,在本实验条件下,上覆水水质影响底泥氮、磷的释放,尤其显著影响氮、磷的初期释放;上覆水氮、磷的浓度越小,底泥氮、磷的释放量越大;上覆水氮、磷的浓度超过一定值,会抑制底泥氮、磷的释放。  相似文献   

2.
富营养化水体中底泥释磷的影响因素及其释放机理   总被引:5,自引:0,他引:5  
磷是湖泊富营养化的主要限制因子,本文综述了沉积物中磷的赋存形态,释放机理及其影响因素.内源磷的赋存形态主要分为铝磷、铁磷、钙磷及有机磷.磷释放受pH值、溶解氧、生物、温度、扰动5种因素影响.对富营养水体内源磷释放的影响因素及其机理进行研究可为富营养化水体的治理提供理论依据.  相似文献   

3.
采用实验室静态模拟法,研究了白洋淀上覆水氮磷浓度对沉积物中氮磷释放的影响。结果表明,上覆水浓度对沉积物中氮磷释放速率有较大影响,上覆水浓度越低,营养盐释放速率越快,反之越慢。S曲线可以很好地拟合氮磷营养盐累计释放量的变化趋势,指数衰减动力学模型可以很好地描述氮磷释放速率变化趋势。  相似文献   

4.
以高浓度氮磷模拟废水为处理对象,通过静态实验研究了MAP法(磷酸铵镁法)与沸石吸附组合工艺的脱氮除磷效果。以MAP法除磷脱氮后的出水作为沸石吸附过程的进水,最终出水的氮、磷去除率可达86.69%和99.9%,且在MAP反应过程中采取较高的pH值和Mg^2+浓度有利于后期沸石对氮、磷的吸附去除。  相似文献   

5.
SBR法强化脱氮除磷工艺的研究开发现状   总被引:1,自引:0,他引:1  
根据SBR工艺的特征和氮磷脱除机理,分析了改善SBR氮磷脱除功能的有效途径,重点对目前已研究开发出的几种实用的SBR法强化脱氮除磷工艺进行综述。  相似文献   

6.
除磷微生物和新型除磷工艺   总被引:3,自引:1,他引:3  
本文总结了聚磷微生物的微生物学、分子生物学、生化动力学,生物除磷的影响因素,并进一步探讨了一些能够在不利的环境条件下实现除磷的新型生物除磷脱氮工艺,以及如何实现除磷的最佳化。对聚磷微生物的筛选和驯化以及遗传改良将有助于进一步开发高效的生物除磷工艺,磷的资源化回收利用和再循环将是今后研究的前沿。  相似文献   

7.
鸟粪石沉淀法回收污泥处理构筑物中氮磷的研究进展   总被引:1,自引:0,他引:1  
陈轶  员建  苑宏英 《四川环境》2008,27(5):89-92
污水处理厂氮磷的处理和回收已经成为必然。而污泥处理构筑物中氮磷的释放则进一步要求对其中释放的氮磷进行回收。本文介绍了国内外对鸟粪石形成条件、外加镁源以及各种利用鸟粪石沉淀法进行污泥处理构筑物中氮磷回收的研究现状,并对其在污泥处理构筑物氮磷回收中存在的问题进行了论述。  相似文献   

8.
碳氮磷比失调对污水生物脱氮除磷的影响   总被引:1,自引:0,他引:1  
宋周兵  于薇 《四川环境》2008,27(6):73-76
我国南方城市污水普遍存在低碳相对高氮磷特征,本文介绍了同时生物脱氮除磷的机理、对碳源的需求与竞争,以及一些针对此类污水生物脱氮除磷的改进工艺及其在实际运用中的效果,并对此类污水的处理方向进行了展望。  相似文献   

9.
生物除磷微生物研究进展   总被引:4,自引:0,他引:4  
吴蕾  宋志文  温少鹏  李凌云 《四川环境》2007,26(3):94-98,126
本文阐述了生物除磷过程中PAOs和DPB代谢机理,总结了近年来在EBPR系统及其他生物除磷系统中分离到的除磷微生物的种类、习性、特征等,并对今后相关重点研究进行展望。  相似文献   

10.
人工湿地中氮元素的脱除主要依靠多种微生物的联合作用,因此氮代谢微生物的和谐共存成为人工湿地高效脱氮的基础。本文分析回顾了氨氧化细菌、亚硝酸盐氧化菌、反硝化细菌及厌氧氨氧化菌等主要氮代谢微生物的共存策略及反应机理。  相似文献   

11.
ABSTRACT: Because the Truckee River connects two lakes along the Eastern Sierra Nevada Mountains with different limiting nutrients, this research addresses whether the nitrogen:phosphorus (N:P) balance of the river ecosystem changes longitudinally. Historical (1990 to 2000) total nitro‐gen:total phosphorus (TN:TP) ratios in river water exhibited the expected gradient from high N:P ratios upstream to low N:P ratios downstream, with the major gradient of the N:P balance occurring within the transition between montane and high desert terrain. During 2001, the river contained anomalously low total nitrogen concentrations in the far upper reaches and dissolved inorganic nitrogen concentrations in the lower reaches, resulting in a less apparent longitudinal gradient of N:P ratios. Measurements of periphyton growth and physiology (nutrient bioassays and ectoenzyme activities) and stoichiometry during the summer of 2001 also exhibited a complex picture of the spatial variation of N:P balance that was not entirely consistent with a strong N:P gradient. However, the compendium of the indicators did support the overall picture of an overarching longitudinal gradient from high to low N:P ratios. The results suggest that periphyton management efforts in the Truckee River should consider the overall spatial gradient as well as the small‐scale dynamics of the stream ecosystem structure.  相似文献   

12.
ABSTRACT: Drought in the 1960's lowered Quabbin Reservoir levels and exposed extensive shore areas for up to 12 years. Several vegetation types including gray birch, spirea, reed and cottonwood invaded the exposed shore and were subsequently submerged when water levels rose in 1972–73. Biomass of the flooded vegetation is estimated at 14,000 tons. Using literature-derived estimates of nitrogen and phosphorus concentrations in the vegetation, the potential nutrient release to the reservoir is about 140 tons of N and 14 tons of P. These amounts are comparable to the N and P input into the reservoir during a single year of the planned diversion from the Connecticut River. The critical factor of rate of release of these nutrients by decomposition is the subject of continuing study.  相似文献   

13.
ABSTRACT: Data from 85 sites across the United States were used to estimate concentrations and yields of selected nutrients in streams draining relatively undeveloped basins. Flow‐weighted concentrations during 1990–1995 were generally low with median basin concentrations of 0.020, 0.087, 0.26, 0.010, and 0.022 milligrams per liter (mg/L) for ammonia as N, nitrate as N, total nitrogen, orthophosphate as P, and total phosphorus, respectively. The flow‐weighted concentration of nitrate exceeded 0.6 mg/L in only three basins. Total nitrogen exceeded 1 mg/L in only four basins, and total phosphorus exceeded 0.1 mg/L in only four basins. The median annual basin yield of ammonia as N, nitrate as N, total nitrogen, orthophosphate as P, and total phosphorus was 8.1, 26, 86, 2.8, and 8.5 kilograms per square kilometer, respectively. Concentrations and yields of nitrate tended to be highest in northeastern and mid‐Atlantic coastal states and correlated well with areas of high atmospheric nitrogen deposition. Concentrations and yields of total nitrogen were highest in the southeastern part of the nation and in parts of the upper Midwest. In the northeast, nitrate was generally the predominant form of nitrogen, and in the southeast and parts of the upper Midwest, organic nitrogen was the dominant form. Concentrations of total phosphorus were generally highest in the Rocky Mountain and Central Plain states.  相似文献   

14.
The hydrologic and geochemical conditions that prevail in Mediterranean temporary ponds (MTPs), create a unique environment for many rare and endangered species. Mediterranean temporary ponds are habitats of high ecological value, which are vulnerable to imminent climatic changes, as well as to human activities. This article examines the hydrology and the nitrogen and phosphorous geochemical cycles of four MTPs in Crete. Field and laboratory studies provided the necessary information for the development of a conceptual understanding of the hydrologic and biogeochemical processes that affect the fate of nitrogen and phosphorous in these MTPs. Their hydrology was driven by deposition, infiltration, and evaporation. The hydroperiod of the ponds varied between 40 and 160 d. Mineralization and nutrient release capacity experiments illustrated the significant role that MTP sediments played in enhancing the geochemistry of the aqueous phase. Such ecosystem functions (i.e., mineralization, nutrient release) exhibited high variability among MTPs necessitating site-specific studies with immediate implications to management. It is very important to understand the local hydrogeochemical and climatic conditions to ensure appropriate environmental measures for their management and conservation.  相似文献   

15.
Chesapeake Bay has been the subject of intensive research on cultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce controllable sources of nitrogen (N) and phosphorous (P) by 40% by the year 2000, although the causes and effects of eutrophication were incompletely known. Subsequent research, modeling, and monitoring have shown that: (i) the estuarine ecosystem had been substantially altered by increased loadings of N and P of approximately 7- and 18-fold, respectively; (ii) hypoxia substantially increased since the 1950s; (iii) eutrophication was the major cause of reductions in submerged vegetation; and (iv) reducing nutrient sources by 40% would improve water quality, but less than originally thought. Strong public support and political commitment have allowed the Chesapeake Bay Program to reduce nutrient inputs, particularly from point sources, by 58% for P and 28% for N. However, reductions of nonpoint sources of P and N were projected by models to reach only 19% and 15%, respectively, of controllable loadings. The lack of reductions in nutrient concentrations in some streams and tidal waters and field research suggest that soil conservation-based management strategies are less effective than assumed. In 1997, isolated outbreaks of the toxic dinoflagellate Pfiesteria piscicida brought attention to the land application of poultry manure as a contributing factor to elevated soil P and ground water N concentrations. In addition to developing more effective agricultural practices, emerging issues include linking eutrophication and living resources, reducing atmospheric sources of N, enhancing nutrient sinks, controlling sprawling suburban development, and predicting and preventing harmful algal blooms.  相似文献   

16.
大气氮沉降增加是全球变化的重要现象之一,草原生态系统对氮沉降增加的响应成为草地生态学的研究热点之一。凋落物分解是草原生态系统养分循环和能量流动的主要途径,氮沉降增加引起草原植物群落结构变化,导致凋落物质量、土壤肥力、土壤微生物和土壤动物的变化,最终影响凋落物的分解。本文综述了氮沉降对草原凋落物结构、化学组成和分解环境的影响等方面的国内外最新研究进展,讨论了需进一步加强研究的内容,以期为进一步拓展该领域研究的广度和深度、为全面分析和评估全球变化对草原生态系统的影响提供参考。  相似文献   

17.
ABSTRACT: Simulated rainfall was used on experimental field plots to compare the effect of chemical fertilizer and sludge application on sediment, nitrogen, and phosphorus in runoff from no-till and conventional tillage systems. Chemical fertilizer application under the no-till system resulted in the least amount of total N and P in surface runoff. However, sludge application under the no-till system resulted in the least amount of NO3-N and sediment in surface runoff. The worst water quality scenarios were observed when either sludge or chemical fertilizer were surface-applied under a conventional tillage system. Nitrogen losses from the conventional tillage system were minimized when sludge was incorporated into the soil. However, phosphorus and sediment yield from such a system were significantly higher when compared to phosphorus and sediment yield from the no-till system. The results from this study indicate that the use of sludge on agricultural land under a no-till system can be a viable alternative to chemical fertilizer for nitrogen and phosphorus control in runoff. A more cautious approach is recommended when the sludge is incorporated into the soil in a conventional tillage system because of potential for high sediment and phosphorus yield in surface runoff.  相似文献   

18.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

19.
缺氧反应时间对反硝化除磷系统脱氮除磷效果的影响   总被引:4,自引:0,他引:4  
反硝化除磷工艺具有节省碳源、曝气量以及污泥产量低等优点,因而在处理城市生活污水中具有显著优势。反硝化除磷效能主要在缺氧阶段完成。缺氧时间直接影响系统的脱氮除磷效率。本实验以SBR反应器在厌氧/缺氧/好氧条件下富含的反硝化聚磷菌(DPAOs)为研究对象,通过调节不同的缺氧反应时间(150 min,210 min和270 min),考察缺氧反应时间冲击对下一周期代谢的影响和长期对整个反硝化除磷系统的影响。冲击实验发现:缺氧时间的改变基本不影响下一周期挥发性脂肪酸(VFAs)的吸收以及硝氮去除。在长期缺氧反应时间不同的系统中,当缺氧时间分别为150 min、210 min和270 min时,除磷效率分别是-10.4%、62.5%、73.6%,脱氮率均达到100%。当缺氧反应时间从150 min延长到270 min时,微生物体内聚羟基脂肪酸酯(PHAs)水平和聚磷(poly-P)水平以及释磷量都升高。实验表明,缺氧时间的适当延长利于提高除磷效率。  相似文献   

20.
Atmospheric deposition of nitrogenous compounds to ombrotrophic peatlands (i.e., those that have peat layers higher than their surroundings and receive nutrients and minerals exclusively by precipitation) has the potential to significantly alter ecosystem functioning. This study utilized the acetylene inhibition technique to estimate the relative importance of denitrification in nitrogen removal from a primarily ombrotrophic peatland, in an attempt to estimate the threat of increased nitrogen loadings to these areas. Estimates of mean rates of denitrification ranged from -2.76 to 84.0 ng N(2)O-N cm(-3) h(-1) (equivalent to -150 to 4800 microg N(2)O-N m(-2) h(-1)) using an ex situ core technique and from -8.30 to 5.98 microg N(2)O-N m(-2) h(-1) using an in situ chamber technique. Core rates may have been elevated over natural field levels due to effects of disturbance on substrate availability, and chamber rates may have been low due to diffusional constraints on acetylene and N(2)O. Net nitrification was also measured in an attempt to evaluate this process as a source of nitrate for denitrifiers. The low rates of net nitrification measured, in combination with the low rates of in situ denitrification and the very low amounts of free nitrate measured in this peatland, suggests that inorganic N turnover in this wetland is low. Results showed that nitrate was a limiting factor for denitrification in this peatland, with mean rates from nitrate-amended cores ranging from 13.1 to 260 ng N(2)O-N cm(-3) h(-1), and it is expected that increases in nitrogen loadings will increase denitrification rates in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号