首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The science of sustainability has inevitably emerged as a vibrant field of research and education that transcends disciplinary boundaries and focuses increasingly on understanding the dynamics of social-ecological systems (SES). Yet, sustainability remains an elusive concept, and its nature seems unclear for the most part. In order to truly mobilize people and nations towards sustainability, we place emphasis on the necessity of understanding the nature, cost and principles of ‘visioneering’—the engineering of a clear vision. In SES, purpose is the most important pillar, which gives birth to vision—the key to fulfilling the systems’ mission. Such a systems perspective leads us to redefine resilience as jumping back to the original purpose, for which SES do not necessarily retain the same structures and functioning after disturbances. A sustainable future will require purpose-driven transformation of society at all scales, guided by the best foresight, with insight based on hindsight that science can provide. Visioneering with resilience-based systems thinking will provide communities with a logical framework for understanding their interconnections and purposes, envisioning a sustainable web of life, and eventually dancing with the systems.  相似文献   

3.
Sustainability research has gained scholarly attention since the 1980s as the new science investigating the changes in social, environmental and economic systems and their impacts on the future of planetary life support systems. Whilst broad literature on sustainability has expanded significantly over the past decades, academic literature developing sustainability as a distinct science has received little attention. After more than two decades of sustainability research, the time has come for us to begin asking reflective questions about what sort of science we call sustainability science. How has the broader research on sustainability contributed to developing sustainability science as a unique discipline within the past two decades? How has the label science promoted or hindered the interdisciplinary project of integrating the natural and social sciences as well as arts and humanities in addressing human nature problems? I argue in this review paper that special efforts need to be made towards the building and positioning of sustainability as an umbrella science for global sustainability research. The benefits of the new sustainability science advocated for in this paper are that; a) it offers a universal definition of sustainability that accounts for both the needs of life and the capacity of planetary life support systems to provide for those needs and b) proposes ways of bridging gaps among different research traditions, facilitating cross disciplinary communication and addressing the challenge of multiple meanings and definitions of concepts facing sustainability research today.  相似文献   

4.
Sustainability is achieved only when there is full reconciliation between: (1) economic development; (2) meeting, on an equitable basis, growing and changing human needs and aspirations; and (3) conserving the limited natural resources and the capacity of the environment to absorb the mulitple stresses that are a consequence of human activities. The linkages between climate and sustainability are examined in the context of both the wider Asia-Pacific region and local level climate risks and adaptation responses. These findings are used to underpin and illustrate several implications for sustainability science. Climate change is seen as both an impediment to increasing sustainability and as an opportunity, though in most cases the former far outweighs the latter. Assessments of climate change vulnerability and risk are shown to be of critical importance because they inform decisions as to where resources for adaptation are best invested. They also show whether global efforts to reduce greenhouse gas emissions need to be strengthened because of limits to adaptation. In practice, adaptation takes place at many levels, essentially ranging between tangible interventions at community and enterprise level and national and international efforts to strengthen the enabling environment for adaptation. It is informative to undertake regional assessments of adaptation, even though most adaptation interventions need to reflect local conditions, including local adaptive capacities. The foregoing findings, based in part on a series of regional and local case studies, lead to several recommendations for further research that will help reduce barriers to implementing responses that reduce climate related risks, including adverse consequences for sustainability. The recommendations relate to such themes as making optimum use of predictive capabilities, characterising the linkages between climate change and sustainability, implications of the required rates and magnitudes of adaptation, institutional responses that enhance adaptive capacity, use of new and traditional technologies, the multiple dimensions of social responsibility, and enhancing the enabling environment for adaptation at the community and enterprise level. If these recommendations are acted upon they will, in turn, help address much needed improvements in quantifying the costs and benefits of adaptation, prioritising adaptation options, assessing sustainable development tradeoffs, and monitoring the success of adaptation initiatives. Such improvements will have even greater utility if they are incorporated into user-friendly decision support tools for adaptation.  相似文献   

5.
The challenge for sustainability educational programs lies in how to imbue students with the strong motivation necessary to move the world in a more sustainable direction. Five universities in Japan have mutually collaborated in the design and development of a unique curriculum and education system for sustainability science since 2008. Specifically, they have developed a common and remote lecture system called the “Frontier of sustainability science” (FSS). This paper discusses the concepts and challenges of FSS and how it was organized to teach students to actively learn how to work with people of various disciplines to realize interdisciplinarity.  相似文献   

6.
7.
One of the most important and yet difficult challenges that modern societies face is how to mobilize science and technology (S&T) to minimize the impact of human activities on the Earth’s life support systems. As the establishment of inter-disciplinary education programs is necessary to design a unified vision towards understanding the complexity of human nature, the Research Institute for Sustainability Science (RISS) launched a new program on sustainability science in April 2008. The program expects to address the issue of how to use knowledge more effectively to understand the dynamic interactions between nature and human society. This paper first offers an overview of international and Japanese initiatives on sustainability education in which we highlight the uniqueness of the attempt by the Integrated Research System for Sustainability Science (IR3S). The paper then introduces the RISS program for sustainability science, addressing the principles and curriculum design of the program. The paper discusses the main problems and constraints faced when developing the program, such as institutional barriers in building a curriculum and obtaining cooperation from faculty. To challenge these barriers and limitations, the RISS uses the program as a platform to disseminate the idea of sustainability science across the university. This attempt helps us to obtain the continuing cooperation necessary to improve and maintain the program.
Michinori UwasuEmail:
  相似文献   

8.
Sustainability is an important concept for society, economics, and the environment, with thousands of research papers published on the subject annually. As sustainability science becomes a distinctive research field, it is important to define sustainability clearly and grasp the entire structure, current status, and future directions of sustainability science. This paper provides an academic landscape of sustainability science by analyzing the citation network of papers published in academic journals. A topological clustering method is used to detect the sub-domains of sustainability science. Results show the existence of 15 main research clusters: Agriculture, Fisheries, Ecological Economics, Forestry (agroforestry), Forestry (tropical rain forest), Business, Tourism, Water, Forestry (biodiversity), Urban Planning, Rural Sociology, Energy, Health, Soil, and Wildlife. Agriculture, Fisheries, Ecological Economics, and Forestry (agroforestry) clusters are predominant among these. The Energy cluster is currently developing, as indicated by the age of papers in the cluster, although it has a relatively small number of papers. These results are compared with those obtained by natural language processing. Education, Biotechnology, Medical, Livestock, Climate Change, Welfare, and Livelihood clusters are uniquely extracted by natural language processing, because they are common topics across clusters in the citation network.  相似文献   

9.
After its infant stage, a new science usually starts reflexing on its identity and theoretical roots. Sustainability science is not an exception, and the needs of self-reflection are even more pressing because of its inter- and trans-disciplinary characters, which involve a plenty of different approaches, theories and practices. In fact, such a variety does not provide a consistent ground for its future development. Without a solid grounding on a reliable base, the plethora of different theories that currently crowds its arena could in the near future produce a rejection from disciplinary specialized researchers, thus confining sustainability science to a scientific fad. Convincing theoretical roots can be found in systems science and cybernetics, and in particular second-order cybernetics, once amended from autopoiesis theory and radical constructivism, which raise serious doubts of validity and applicability. If sustainability science acknowledged its systemic and cybernetic nature and adopted second-order cybernetics in its amended version, it would gain a powerful reference paradigm and a theoretical common denominator and language to support its researchers and facilitate their knowledge exchange. From their part, systems science and cybernetics would be better understood and embraced as powerful sources of knowledge for understanding modern challenging problems, and second-order cybernetics, after decades of scarce relevance for other scientific disciplines, would be revitalized and would finally evolve adequately in a promising science and social practice.  相似文献   

10.
11.
This paper summarizes some personal impressions of the 7th conference of the International Complex Systems Society, co-organized with “Future Earth”, held in Stockholm on August 24–26, 2017. The main point is that it is urgent and important to consider the sustainability conundrum as long-term, society-driven one, and to place societal dynamics at the core of how we, as a global society, came to this point, how ongoing dynamics are driving us towards a tipping point, and which role the Information and Communication Technology revolution plays in that process. A much wider involvement of the social sciences is essential. This also requires major changes in our thinking about sustainability—we need to develop an approach in which change is the natural state of affairs and societies attempt to impose stability on the dynamics involved. We need to focus on learning from the past, about the present, but above all for the future. And we need to shift from an entity-focused approach to a relational one, which pays more attention to contexts and networks. Other issues raised by such a shift in our thinking are about the role of science, the adoption of complex systems approaches and a few others that the paper points to.  相似文献   

12.
13.
Over the last decade, sustainability science has emerged as an interdisciplinary and innovative field attempting to conduct problem-driven research that links knowledge to action. As the institutional dimensions of sustainability science continue to gain momentum, this article provides an analysis of emerging research agendas in sustainability science and an opportunity for reflection on future pathways for the field. Based on in-depth interviews with leading researchers in the field and a content analysis of the relevant literature, this article examines how sustainability scientists bound the social, political and normative dimensions of sustainability as they construct research agendas and look to link knowledge to social action. Many scientists position sustainability science as serving universal values related to sustainability and providing knowledge that is crucial to societal decision-making. The implications of these findings are discussed with an eye towards creating a space for a more democratic and reflexive research agenda for sustainability.  相似文献   

14.
Sustainability science is a rapidly expanding field, particularly given the current ecological crises facing many parts of the globe today. To generate a snapshot of the state of sustainability science, we analyzed the current status of sustainability research using citation and text analysis. By reflecting social needs on sustainability science and the increasing number of publications in this field, the landscape is expected to change during the last decade. Our results indicate that previously separated research clusters investigating discipline-focused issues are becoming integrated into those studying coupled systems. We also found the existence of hub clusters bridging different clusters like socio-ecological systems and transition management. We also observed a variety of other emerging research clusters, especially in energy issues, technologies, and systems. Overall, our analysis suggests that sustainability science is a rapidly expanding and diversifying field, which has affected many disparate scientific disciplines and has the potential to feed scientific understanding on socio-ecological systems and to drive society toward transition for sustainability.  相似文献   

15.
Envisioning how a desirable future might look is a long-standing effort in human evolution and social change. Utopian thought and visions provide direction for actions and behavior; more so, they create identity and community. Accordingly, the discourse on sustainability and sustainable development has recognized that positive visions about our societies’ future are an influential, if not indispensable, stimulus for change. Visioning is, thus, considered a key method in sustainability research and problem solving, for instance, in transformational sustainability science or in planning for urban sustainability. Yet, quality criteria for sustainability visions and guidelines on how to rigorously craft such visions are scattered over different strands of the literature and some are insufficiently developed. The goal of this article is to review and synthesize such quality criteria and design guidelines to inform sustainability visioning methodology. The review provides a concise reference framework for sustainability students, researchers, and professionals on how to enhance their sustainability visioning practices.  相似文献   

16.
Sustainability science is at an early stage of development. Among many other obstacles, there are two prominent issues hindering its advance. There is both a lack of a set of principles for knowledge construction, and a need to implement research to solve real problems. This paper proposes a typology of scientific reflections for meeting these two challenges and contributing to sustainability science development. This typology is made up of four kinds of reflection: practical, instrumental-methodological, theoretical-conceptual, and onto-epistemological. Each kind of reflection is based on a different type of question and gives shape to its respective type of research.  相似文献   

17.
Implementation of the sustainability science (SS) approach is often difficult because of poor communication between experts from different academic fields. We focused on ontology engineering as a method of knowledge structuring that supports the co-deliberation process. However, SS is too broad for a few experts to construct an ontology because SS targets and covers almost all existing research fields from the viewpoint of problem-solving. The N-iteration process is required for completing an SS ontology. In the present paper, we discuss the initial design process for constructing an ontology on SS from the aspect of a knowledge-sharing tool to support co-deliberation. First, we identified the SS ontology by referring to the existing literature. Second, we traced the structuring process of the SS ontology, which is independent of the existing research domain. Third, we compared the SS ontology with existing ontologies or concept structures on SS. Fourth, we assessed the SS ontology produced in the initial process in terms of relevance and coverage and addressed areas for improvement in order to facilitate co-deliberation among researchers from different domains. As a result of developing the SS ontology and applying it to the mapping tool that we developed based on the ontology, we found the following three points: the SS ontology enables us to define concepts relevant to SS without overlapping by distinguishing part-of and attribute-of relationships at the upper level of the ontology; the SS-based mapping tool successfully represents the potential countermeasures required by the targeted problem for all scientific fields except experimental engineering; however, the SS ontology requires further improvement in order to represent the conceptual linkage arising from compound and secondary problems and the fulfillment of classes at the lower hierarchy of Shortage problem, and requires slots for the entire hierarchy. In addition, based on the discussion of the areas for improvement, we found that missing slots and classes should be added in the process in which we use or improve tools corresponding to a variety of requirements for supporting co-deliberation. In this way, we are able to propose an incremental process for constructing the SS ontology from the aspect of a knowledge-sharing tool to support co-deliberation.  相似文献   

18.
The future of sustainability science: a solutions-oriented research agenda   总被引:1,自引:0,他引:1  
Over the last decade, sustainability science has been at the leading edge of widespread efforts from the social and natural sciences to produce use-inspired research. Yet, how knowledge generated by sustainability science and allied fields will contribute to transitions toward sustainability remains a critical theoretical and empirical question for basic and applied research. This article explores the limitations of sustainability science research to move the field beyond the analysis of problems in coupled systems to interrogate the social, political and technological dimensions of linking knowledge and action. Over the next decade, sustainability science can strengthen its empirical, theoretical and practical contributions by developing along four research pathways focused on the role of values in science and decision-making for sustainability: how communities at various scales envision and pursue sustainable futures; how socio-technical change can be fostered at multiple scales; the promotion of social and institutional learning for sustainable development.  相似文献   

19.
20.
Sustainability science aims to help societies across the globe address the increased environmental and health crises and risks that range from poverty to climate change to health pandemics. With the increased magnitude and frequency of these large-scale risks to different societies, scientists and institutions have increasingly recognized the need for improved communication and collaboration among researchers, governments, businesses, and communities. This article argues that risk communication has fundamentally important contributions to make to sustainability science’s mission to create use-inspired, “actionable science” that can lead to solutions. Risk communication research can advance the mission of sustainability science to engage a wide range of stakeholders. This kind of engagement is especially important in the context of addressing sustainability problems that are characterized by high levels of uncertainty and complexity. We introduce three core tenets of risk communication research that are fundamental to advancing sustainability science. Risk communication specifically offers an increased understanding of how system feedbacks, human perceptions, and levels of uncertainty influence the study and design of solutions within social ecological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号