首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneities in behaviours of individuals may underpin important processes in evolutionary biology and ecology, including the spread of disease. Modelling approaches can sometimes fail to predict disease spread, which may partly be due to the number of unknown sources of variation in host behaviour. The European badger is a wildlife reservoir for bovine tuberculosis (bTB) in Britain and Ireland, and individual behaviour has been demonstrated to be an important factor in the spread of bTB among badgers and to cattle. Radio-telemetry devices were deployed on 40 badgers from eight groups to investigate patterns of den (sett) use in a high-density population, where each group had one or two main and three to eight outlier setts in their territory. Badgers were located at their setts for 28 days per season for 1 year to investigate how patterns differed between individuals. Denning behaviour may have a strong influence on contact patterns and the transmission of disease. We found significant heterogeneity, influenced by season, sex and age. Also, when controlling for these, bTB infection status interacting with season was highly correlated with sett use. Test-positive badgers spent more time away from their main sett than those that tested negative. We speculate that wider-ranging behaviour of test-positive animals may result in them contacting sources of infection more frequently and/or that their behaviour may be influenced by their disease status. Measures to control infectious diseases might be improved by targeting functional groups, specific areas or times of year that may contribute disproportionately to disease spread.  相似文献   

2.
Williams NM  Regetz J  Kremen C 《Ecology》2012,93(5):1049-1058
Variation in the availability of food resources over space and time is a likely driver of how landscape structure and composition affect animal populations. Few studies, however, have directly assessed the spatiotemporal variation in resource availability that arises from landscape pattern, or its effect on populations and population dynamic parameters. We tested the effect of floral resource availability at the landscape scale on the numbers of worker, male, and queen offspring produced by bumble bee, Bombus vosnesen?kii, colonies experimentally placed within complex agricultural-natural landscapes. We quantified flower densities in all land use types at different times of the season and then used these data to calculate spatially explicit estimates of floral resources surrounding each colony. Floral availability strongly correlated with landscape structure, and different regions of the landscape showed distinct seasonal patterns of floral availability. The floral resources available in the landscape surrounding a colony positively affected the number of workers and males it produced. Production was more sensitive to early- than to later-season resources. Floral resources did not significantly affect queen production despite a strong correlation between worker number and queen number among colonies. No landscape produced high floral resources during both the early and late season, and seasonal consistency is likely required for greater queen production. Floral resources are important determinants of colony growth and likely affect the pollination services provided by bumble bees at a landscape scale. Spatiotemporal variation in floral resources across the landscape precludes a simple relationship between resources and reproductive success as measured by queens, but nonetheless likely influences the total abundance of bumble bees in our study region.  相似文献   

3.
The genetic structure of a population is closely connected to fundamental evolutionary processes and aspects of social behavior. Information on genetic structure is therefore instrumental for the interpretation of social behavior and evolutionary reconstructions of social systems. Gray mouse lemurs (Microcebus murinus) are basal primates endemic to Madagascar whose social organization is characterized by solitary foraging at night and communal resting during the day. Conflicting reports about population structure based on behavioral observations led us to examine the genetic structure of one population in detail in order to: (1) identify natural genetic units in this solitary primate, and (2) to test the assumption of current models of primate social evolution that solitary primates are organized in matrilines. DNA was extracted from tissue samples of 85 individuals from Kirindy forest to determine their variability at a 530 bp fragment of the mitochondrial D-loop and at six microsatellite loci. We found that this population was characterized by a great general diversity among mtDNA haplotypes, a pronounced sex difference in mtDNA haplotype diversity and spatial clustering of females with a particular haplotype, but low average relatedness among members of haplotype clusters. Specifically, we identified 13 different haplotypes, which were unevenly distributed among individuals. About 80% of all individuals, most of which were females or juvenile males, shared a single haplotype. Rare haplotypes were almost exclusively represented by single adult males, who apparently migrated into this population. One other haplotype was represented by a small group of females living at one edge of the study area. Microsatellite analysis revealed above-average relatedness among females with overlapping home ranges, as well as no signs of inbreeding, implying that male dispersal results in high levels of gene flow among matrilineal groups. We conclude that gray mouse lemur populations are hierarchically organized in small family units of closely related females that form stable sleeping groups, several of which are connected through a common mtDNA haplotype and form spatially distinct clusters. The presence of such matrilines supports a basic assumption of current models of primate social evolution.  相似文献   

4.
Chemical defenses are thought to contribute to the invasion success and impacts of many introduced plants; however, for most of these species, little is known about these compounds and how they vary in natural environments. Plant allelochemical concentrations may be affected by a variety of abiotic and biotic factors, including soil nutrients and herbivores. Moreover, such quantitative variation is likely to play an important role in species interactions involving these invasive plants. The purpose of this study was to examine patterns of variation in iridoid glycoside concentrations of the invasive plant Linaria dalmatica (Plantaginaceae). We conducted a greenhouse experiment to investigate the effect of soil nitrogen availability on iridoid glycoside concentrations. Results from this experiment showed that plant iridoid glycoside concentrations decreased with increased nitrogen availability. Additionally, plants were collected from multiple field sites in order to characterize the influence of population, soil nitrogen availability, and herbivore attack on iridoid glycoside variation. Results from field studies indicated that plants demonstrated considerable seasonal variation, as well as variation within and among populations, with iridoid glycoside concentrations ranging from approximately 1 to 15% dry weight. The relationship between soil nitrogen and plant iridoid glycosides varied among populations, with a strong negative correlation in one population, a marginally significant negative relationship in a second population, and no relationship in the remaining two populations. Additionally, we found a negative relationship between iridoid glycoside concentrations and plant injury by an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus (Cucurlionidae). These results show that plant allelochemical concentrations can vary widely in natural environments and suggest that levels of plant defense may be reduced by increased soil nitrogen availability and herbivore attack in this invasive plant species.  相似文献   

5.
Physical and biological processes interact to produce pattern in nature. Pattern is scale dependent as processes generating pattern are heterogeneous in time and space. We tested some causes of variation in abundance and distribution of three marginal populations of sublittoral blue mussels, Mytilus edulis, in the non-tidal northeastern Baltic Sea. We studied the role of substrate inclination, perennial algae and siltation along local wave exposure gradients on mussel distribution over a regional salinity gradient. We found marked differences on regional scales (p < 0.001) with lower densities and biomasses of mussels with declining salinity. Along local gradients, mussel densities increased with increasing exposure (p < 0.001) and declining slope and sedimentation (p < 0.01). Site specifically, densities of blue mussels and the perennial red algae, Furcellaria lumbricalis, were positively related, results supported by a colonisation experiment. Also, young post-recruits showed significant relations to adult biomass, wave exposure, algal biomass, bottom slope and sediment cover. Findings showed that the relative importance of the determinants affecting blue mussels at the edge of their range vary with scale and are affected by the density and size structure of mussel populations. The study provides an indication of the types of factors that may be invoked as causes of spatial variation in marginal blue mussel populations and reinforces the need to consider multiple aspects when distributional patterns are assessed.  相似文献   

6.
Avian vocalisations often show patterns of geographic variation. Previous work on the satin bowerbird has shown that although spatial variation in this species’ advertisement calls is strongly associated with habitat structure, some variation is apparent within habitat types. Seventeen populations located throughout the species’ distribution were used to examine whether spatial call variation could be influenced by other processes such as random drift or the presence of fine-scale vocal traditions; if this were the case, differing call variants would be expected at geographically discrete sampling sites both within and among habitat types. There were population-specific call variants at each of the sites sampled, with different variants apparent even within habitat types. At most sites, individuals gave only a single variant of advertisement call, and the call variant at one site, sampled after a 5-year interval, appears to have been relatively stable. Playback experiments were conducted at three populations to examine whether local call variants invoked a greater response than several non-local variants differing in their degree of similarity to the local variant. Birds responded strongly to local call variants but not to either of two foreign variants, one of which was similar to their local variant and one of which was very different. A pattern of geographic variation across populations, the fact that local and non-local variants evoke different responses and circumstantial evidence indicating that individuals can learn new calls all suggest that factors affecting song learning and the ability of males to establish and defend a bower site may have contributed to the establishment of geographically variable vocal cultures in this species.  相似文献   

7.
Commercially harvested marine bivalve populations show a broad range of population-genetic patterns that may be driven by planktonic larval dispersal (gene flow) or by historical (genetic drift) and ecological processes (selection). We characterized microsatellite genetic variation among populations and year classes of the commercially harvested Arctic surfclam, Mactromeris polynyma, in order to test the relative significance of gene flow and drift on three spatial scales: within commercially harvested populations in the northwest Atlantic; among Atlantic populations; and between the Atlantic and Pacific oceans. We found small nonsignificant genetic subdivision among eight populations from the northwest Atlantic (F ST = 0.002). All of these Atlantic populations were highly significantly differentiated from a northeast Pacific population (F ST = 0.087); all populations showed high inbreeding coefficients (F IS = 0.432). We tested one likely source of heterozygote deficits by aging individual clams and exploring genetic variation among age classes within populations (a temporal Wahlund effect). Populations showed strikingly different patterns of age structure, but we found little differentiation among age classes. In one case, we were able to analyze genetic diversity between age classes older or younger than the advent of intensive commercial harvesting. The results generally suggest spatially broad and temporally persistent genetic homogeneity of these bivalves. We discuss the implications of the results for the biology and management of surfclam populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Mating system and dispersal patterns influence the spatio-genetic structure within and between populations. Among mammals, monogamy is rare, and its socio-genetic consequences have not been studied in detail before. The goal of our study was to investigate population history, demographic structure, and dispersal patterns in a population of pair-living fat-tailed dwarf lemurs, Cheirogaleus medius, a small, nocturnal primate from western Madagascar, and to infer their underlying behavioral mechanisms. Tissue samples for DNA extraction were obtained from a total of 140 individuals that were captured in two subpopulations about 3 km apart. Analyses of mtDNA variability at the population level revealed very low levels of genetic variability combined with high haplotype diversity, which is indicative of a recent population bottleneck. We found no evidence for spatial clustering of same-sexed individuals with identical haplotypes within each of two subpopulations but significant clustering between them. Thus, a high level of local subpopulation differentiation was observed (F ST = 0.230). The sexes showed equal variances in the number of individuals representing each haplotype, as well as equal levels of aggregation of identical haplotypes. Hence, both sexes disperse from their natal area, one pattern expected in a pair-living mammal. There is a possibility of behavioral and social flexibility in this species, however, because we documented pronounced differences in density and sex ratio between the two subpopulations, suggesting that single study sites or populations may not be representative of a given local population or even species.  相似文献   

9.
We used DNA microsatellites to investigate temporal and spatial patterns of local genetic differentiation and relatedness in a solitary mammal, the dusky-footed woodrat (Neotoma fuscipes). Patterns of genetic variation were measured relative to spatial clusters, or neighborhoods, of woodrats. We detected significant genetic differentiation among woodrat neighborhoods in two populations spanning multiple habitat types and densities. Estimates of θ ST among neighborhoods ranged 0.034–0.075 and were comparable to levels reported in social mammals. Genetic differentiation at such a local scale is noteworthy because it occurred in the absence of any physical barriers to gene flow, suggesting that the patterns observed are linked to the nonrandom patterns of mating and dispersal that characterize woodrat social structure. Genetic differentiation and relatedness among neighborhoods were even higher when only resident females were analyzed. These results are consistent with a pattern of female philopatry and male-biased dispersal in woodrats. Geographic distance and relatedness were inversely correlated in adult females at intermediate densities, but not at low densities. Nonetheless, matrilineal genetic structure was apparent even at low woodrat densities based on estimates of θ ST among neighborhoods of resident females that were significantly greater than zero and consistently greater than estimates including all individuals. In summary, this study demonstrates a matrilineal genetic structure in dusky-footed woodrats. In addition, our results support the idea that intermediate densities may be better at facilitating the formation of spatial kin clusters than either extreme. An erratum to this article can be found at  相似文献   

10.
Donaldson JR  Lindroth RL 《Ecology》2007,88(3):729-739
Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.  相似文献   

11.
Møller AP  Soler JJ  Vivaldi MM 《Ecology》2010,91(9):2769-2782
Species vary in abundance and heterogeneity of spatial distribution, and the ecological and evolutionary consequences of such variability are poorly known. Evolutionary adaptation to heterogeneously distributed resources may arise from local adaptation with individuals of such locally adapted populations rarely dispersing long distances and hence having small populations and small overall ranges. We quantified mean population density and spatial heterogeneity in population density of 197 bird species across 12 similarly sized regions in the Western Palearctic. Variance in population density among regions differed significantly from a Poisson distribution, suggesting that random processes cannot explain the observed patterns. National estimates of means and variances in population density were positively correlated with continental estimates, suggesting that means and variances were maintained across spatial scales. We used Morisita's index of population abundance as an estimate of heterogeneity in distribution among regions to test a number of predictions. Heterogeneously distributed passerine bird species as reflected by Morisita's index had small populations, low population densities, and small breeding ranges. Their breeding populations had been consistently maintained at low levels for considerable periods of time, because the degree of genetic variation in a subsample of non-passerines and passerines was significantly negatively related to heterogeneity in distribution. Heterogeneously distributed passerine species were not more often habitat specialists than homogeneously distributed species. Furthermore, heterogeneously distributed passerine species had high annual adult survival rates but did not differ in annual fecundity from homogeneously distributed species. Heterogeneously distributed passerine species rarely colonized urban habitats. Finally, homogeneously distributed bird species were hosts to a greater diversity of blood parasite species than heterogeneously distributed species. In conclusion, small breeding ranges, population sizes, and population densities of heterogeneously distributed passerine bird species, combined with their low degree of genetic variability, and their inability to colonize urban areas may render such species particularly susceptible to human-influenced global climatic changes.  相似文献   

12.
Whereas variation in pronghorn (Antilocapra americana) spatial organization is well documented, underlying ecological or physiological explanations are not well understood. This study quantitatively describes spacing systems of pronghorn males and correlates of their spatial organization. I collected behavioral data from two populations in South Dakota (Wind Cave) and Montana (Bar Diamond) to determine if males differed in space use, response to intruders, and behavior patterns indicative of area defense. I measured sex ratio and population density, and I examined characteristics of food resources, including forb species diversity, richness, coverage, biomass, and nitrogen content, and how they changed during the growing season. I also collected and analyzed fecal samples to determine if males differed in testosterone concentrations. Pronghorn males at Wind Cave were more territorial than males at Bar Diamond, although males at Bar Diamond became more territorial during the second year. The forb community at Wind Cave was more diverse, contained greater amounts of forbs later in summer, and had a higher nitrogen content later in summer. Population density was lower at Wind Cave, although density dropped at Bar Diamond during the second year, and sex ratios were skewed toward males at Bar Diamond. Finally, males at Wind Cave had higher testosterone concentrations than did Bar Diamond males, although differences were not statistically significant. With lower population density and higher forb abundance and quality, food resources were more economically defensible at Wind Cave, and males were more territorial there. Analyses using these and other pronghorn populations revealed that population density and sex ratio correlated weakly with spatial organization, whereas precipitation correlated most strongly, which suggests plant productivity has a powerful role in determining pronghorn territoriality. Received: 16 June 1999 / Received in revised form: 21 September 1999 / Accepted: 31 December 1999  相似文献   

13.
The study of intraspecific variation can provide insights into the evolution and maintenance of behavior. To evaluate the relative importance of ecological, demographic and social conditions thought to favor lekking, I studied variation in mating behavior among and within populations of the blackbuck, Antilope cervicapra, an Indian antelope. Rather than viewing lekking as a discrete mating strategy, I took a continuous approach and treated lekking as a question of the clustering of mating territories, with leks representing one extreme in a range of territory distributions. I surveyed nine blackbuck populations, which differed in population density and in habitat conditions. For each population, I described the mating system in terms of the clustering of mating territories, and measured various factors suggested to favor lekking. I found that large-scale, among-population variation in territory clustering was most strongly related to female group size. Territory clustering was not related to population density. Female group size, in turn, was best explained by habitat structure. Interestingly, these among-population patterns were repeated at a finer spatial scale within one intensively studied population. These findings suggest that territorial males respond to local patterns in female distribution (represented by group size) when making decisions regarding territory location. Finally, although female distribution may explain territory clustering at the population level and more locally within a population, other selective factors (e.g., female preference, male competition, male harassment) are likely to shape the clustering and size of territories at even finer scales.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by T. Czeschlik  相似文献   

14.
In estuarine areas, bivalve species can be found in a variety of environments, where they experience large differences in environmental conditions. In the present paper, the importance of different habitats (intertidal, subtidal and adjacent coastal waters) for the persistence of the population was evaluated for the bivalve Macoma balthica (L.) in the western Dutch Wadden Sea estuary. Intra-specific variation in growth and reproductive output were followed during the year and related to local abiotic conditions. Significant differences in growth and reproductive investment were found between locations. Young individuals were mostly found in the intertidal area, where growth in terms of somatic mass was good. These areas were not favourable for adult individuals, since growth in shell length was low and many individuals did not reproduce. In the subtidal, where the highest densities were found, somatic and gonadal mass indices were low. Coastal areas had the lowest densities and showed high growth in terms of shell length and body mass. The habitat with the highest reproductive effort per individual was not the most important habitat in terms of reproductive output due to differences in density and in size of the habitat type. For M. balthica, the subtidal habitat contributed the most to the reproductive output of the western Dutch Wadden Sea population although the highest reproductive output per individual was in the coastal area.  相似文献   

15.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   

16.
We studied movement and site fidelity of males and females of the territorial frog Allobates femoralis (Aromobatidae) in a population in the Nature Reserve “Les Nouragues” in French Guiana, South America. Observations during 3 months in 2006 ascertained intra-seasonal site fidelity for males and females. Males actively defend large multi-purpose territories whereas females retreat to small resting sites from where they commute to neighbouring males for courtship and mating. Female short-term movement corroborates the previous assumption of a polygynous or promiscuous resource-defence mating system. Year-to-year recaptures from 2005 until 2008 revealed distinct patterns of inter-annual movement for males and regional site fidelity for females. Males abandon their territories and have to re-negotiate them when reproduction starts again at the end of the dry season. Females are not subject to intra- or inter-sexual territorial competition and as a result move significantly less between reproductive seasons than males. Male long-term movement reflects spatial structure and prevailing social interactions and is a reliable indicator for tadpole deposition sites. The combined effects of intra- and inter-seasonal movement promote the diversity of mates for both sexes.  相似文献   

17.
Sex ratio theory is one of the most controversial topics in evolutionary ecology. Many deviations from an equal production of males and females are reported in the literature, but few patterns appear to hold across species or populations. There is clearly a need to identify fitness effects of sex ratio variation. We studied this aspect in a population of a long-lived seabird, the wandering albatross (Diomedea exulans), using molecular sex-identification techniques. We report that parental traits affect both (1) fledgling traits in a sex-dependent way and (2) chick sex: Sons are overproduced when likely to be large at fledging and, to a lesser extent, daughters are overproduced when likely to be in good body condition at fledging. Because for the same population, a previous study reported that post-fledging survival was positively affected by size in males and by body condition in females, our results suggest that wandering albatrosses manipulate offspring sex to increase post-fledging survival.  相似文献   

18.
Intraspecific variation in sociality is thought to reflect a trade-off between current fitness benefits and costs that emerge from individuals' decision to join or leave groups. Since those benefits and costs may be influenced by ecological conditions, ecological variation remains a major, ultimate cause of intraspecific variation in sociality. Intraspecific comparisons of mammalian sociality across populations facing different environmental conditions have not provided a consistent relationship between ecological variation and group-living. Thus, we studied two populations of the communally rearing rodent Octodon degus to determine how co-variation between sociality and ecology supports alternative ecological causes of group living. In particular, we examined how variables linked to predation risk, thermal conditions, burrowing costs, and food availability predicted temporal and population variation in sociality. Our study revealed population and temporal variation in total group size and group composition that covaried with population and yearly differences in ecology. In particular, predation risk and burrowing costs are supported as drivers of this social variation in degus. Thermal differences, food quantity and quality were not significant predictors of social group size. In contrast to between populations, social variation within populations was largely uncoupled from ecological differences.  相似文献   

19.
Although the genetic structure of many populations of marine organisms show little deviation from panmixia, in those marine species with limited larval dispersal, patterns of microgeographic genetic differentiation may be common. The octocoral Briareum asbestinum should show local population differentiation because colonies reproduce asexually by fragmentation, most matings occur between colonies in very close proximity, and the sexually produced larvae and sperm appear to disperse only short distances. Variability in secondary chemistry of individual B. asbestinum colonies from different populations in close proximity also suggests local population differentiation. We determined the genetic composition of local populations by surveying allozyme variation of three shallow and two deep populations within a 300 m2 area at San Salvador Island, Bahamas and at a site 161 km away on Little San Salvador, Bahamas in July 1990. As B. asbestinum occurs as either an erect branching form or an encrusting mat often at the same sites, we sampled both morphs to examine the extent of genetic exchange between them. Five of 21 loci were polymorphic and most populations showed a deficit of heterozygotes. Allele frequencies differed significantly between morphs at each site where they occurred together. The mean genetic distance (D=0.065) between morphs is consistent with the interpretation that the two morphs are genetically isolated. Despite the close spatial proximity of the San Salvador populations, both the branching and encrusting morphs showed significant genetic heterogeneity among neighboring populations. Similarly, pooled allelic frequencies for samples collected from the islands of San Salvador and Little San Salvador differed significantly at 1 locus for the branching morph and at 3 out of 5 loci for the encrusting morph.  相似文献   

20.
Abstract: The endangered grassland daisy Rutidosis leptorrhynchoides has been subject to severe habitat destruction and fragmentation over the past century. Using allozyme markers, we examined the genetic diversity and structure of 16 fragmented populations. The species had high genetic variation compared to other plant species, and both polymorphism and allelic richness showed strong positive relationships with log reproductive population size, reflecting a loss of rare alleles (frequency of q < 0.1) in smaller populations. Fixation coefficients were positively related to size, due either to a lack of rare homozygotes in small populations or to Wahlund effects (owing to spatial genetic structure) in large ones. Neither gene diversity nor heterozygosity was related to population size, and other population parameters such as density, spatial contagion, and isolation had no apparent effect on genetic variation. Genetic divergence among populations was low , despite a large north-to-south break in the species' current distribution. To preserve maximum genetic variation, conservation strategies should aim to maintain the five populations larger than 5000 reproductive plants, all of which occur in the north of the range, as well as the largest southern population of 626 plants at Truganina. Only one of these is currently under formal protection. High heterozygosity in smaller populations suggests that they are unlikely to be suffering from inbreeding depression and so are also valuable for conservation. Erosion of allelic richness at self-incompatibility loci, however, may limit the reproductive capacity of populations numbering less than 20 flowering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号