首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
Indoor and outdoor measurements of nitrous acid and nitrogen dioxide were conducted at four homes and two offices in residential areas in Greater Cairo during winter (2000-2001) and summer (2001) seasons. Indoor nitrogen dioxide concentrations were higher than outdoor levels at the four homes, whereas indoor concentrations of nitrogen dioxide were lower than outdoor levels at the two offices, during both seasons. Indoor nitrous acid concentrations were higher than outdoor levels at all homes and offices during the period of study. The mean indoor nitrous acid concentrations were 6.8 ppb and 3.67 ppb in the four homes, whereas they were 1.42 ppb and 1.24 ppb in the two offices, during the winter and summer seasons, respectively. Indoor/outdoor ratios of nitrous acid concentration were 6.94 in the winter and 5.03 in the summer for all of the homes. However, the ratios were 1.31 and 1.61 during the winter and summer seasons, respectively, for the two offices. Insignificant positive correlation coefficients were found between indoor and outdoor concentrations of nitrous acid at homes and offices. The maximum outdoor nitrous acid concentrations were recorded during the winter season. Significant positive correlation coefficients were found between nitrous acid and nitrogen dioxide and relative humidity in homes and offices. The ratios of nitrous acid to nitrogen dioxide concentrations ranged from 0.045 to 0.16, with a mean of 0.1, in the four homes, whereas the ratios ranged from 0.026 to 0.09, with a mean of 0.059, in the two offices.  相似文献   

2.
Libby, Montana is the only PM2.5 nonattainment area in the western United States with the exceptions of parts of southern California. During January through March 2005, a particulate matter (PM) sampling program was conducted within Libby’s elementary and middle schools to establish baseline indoor PM concentrations before a wood stove change-out program is implemented over the next several years. As part of this program, indoor concentrations of PM mass, organic carbon (OC), and elemental carbon (EC) in five different size fractions (>2.5, 1.0–2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) were measured. Total measured PM mass concentrations were much higher inside the elementary school, with particle size fraction (>2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0–2.5 μm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher than the middle school values. The carbon component for the schools’ indoor PM was found to be predominantly composed of OC. Measured total OC and EC concentrations, as well as concentrations within individual size fractions, were an average of two to five times higher at the elementary school when compared to the middle school. For the ultrafine fraction (<0.25), EC concentrations were similar between each of the schools. Despite the differences in concentrations between the schools at the various fraction levels, the OC/EC ratio was determined to be similar.  相似文献   

3.
Air concentrations of 28 of the most commonly used household pesticides were measured inside nine homes in Jacksonville, Florida, and compared with corresponding outdoor levels. The households selected were sorted into three categories according to the degree of pesticide indoor usage. Personal air monitoring was also performed on one resident of each household by means of a portable sampler, which was kept with the person at all times. Five of the pesticides were found in the air inside of the majority of the homes at concentrations as high as 15 gm–3 (average concentrations, 12 ngm–3 to 2.4 gm–3). Indoor levels were generally one to two ordrrs of magnitude higher than surrounding outdoor air levels and personal air measurements were within ± 50% of corresponding indoor values. All samples were collected over 24-hr periods on polyurethane foam and analyzed by capillary colum gas chromatography with mass spectrometric and/or electron capture detection.  相似文献   

4.
Studies on health effects of air pollutants ideally define exposure through the collection of air samples in the participants' homes. Concentrations derived from these samples are then considered as an estimate for the average concentration of air pollutants in the homes. Conclusions drawn from such studies therefore depend very much on the validity of the measured air pollution concentrations. In this paper we analysed repeated BTEX and NO(2) measurements with a time period of several months lying between the two conducted home visits. We investigated the variability of their concentrations over time by determining correlation coefficients and calculating within- and between-home variances. Our population consisted of 631 homes of participants from two cohort studies within the framework of the German study on Indoor Factors and Genetics in Asthma. Air pollutants were measured using passive samplers both indoors and outdoors. The measured BTEX concentrations were poorly correlated, with Pearson's correlation coefficient r ranging from -0.19 to 0.27. Additionally, a considerable seasonal effect could be observed. A higher correlation was found for the NO(2) concentrations with r ranging between 0.24 and 0.55. For the BTEX, the between-home variance was bigger than the within-home variance, for NO(2) both variances were of about the same order. Our results indicate that in a setting of moderate climate like in Germany, the variability of BTEX and NO(2) concentrations over time is high and a single measurement is a poor surrogate for the long-term concentrations of these air pollutants.  相似文献   

5.
An analytical method for ethylene glycol and propylene glycols has been developed for measuring airborne levels of these chemicals in non-occupational environments such as residences and office buildings. The analytes were collected on charcoal tubes, solvent extracted, and analyzed by gas chromatography-mass spectrometry using a positive chemical ionization technique. The method had a method detection limit of 0.07 microg m(-3) for ethylene glycol and 0.03 microg m(-3) for 1,2- and 1,3-propylene glycols, respectively, based on a 1.44 m3 sampling volume. Indoor air samples of several residential homes and other indoor environments have been analyzed. The median concentrations of ethylene glycol and 1,2-propylene glycol in nine residential indoor air samples were 53 microg m(-3) and 13 microg m(-3) respectively with maximum values of 223 microg m(-3) and 25 microg m(-3) detected for ethylene glycol and 1,2-propylene glycol respectively. The concentrations of these two chemicals in one office and two laboratories were at low microg m(-3) levels. The maximum concentration of 1,3-propylene glycol detected in indoor air was 0.1 microg m(-3).  相似文献   

6.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

7.
Many VOC represent hazards to human health through chronic exposure. Recent European and world-wide legislation proposes limit values for ambient concentrations of these compounds. However, very little experimental data exists for true population exposure. In 1996, the European MACBETH initiative set out to measure population exposure to benzene in six European cities. This study details the French contribution to this program. Six campaigns were carried out, each comprising measurements at 100 outdoor sites and the participation of 50 non-smoking volunteers who wore personal samplers and had passive monitors installed in their homes. Iso-concentration maps were drawn for each campaign and the results showed that outdoor concentrations were significantly lower than indoors. Almost 75% of the volunteers were exposed to mean concentrations higher than the limit value of 5µgm3. It is demonstrated that personal exposure levels cannot be deduced simply by combining indoor and outdoor background concentrations. It is also shown that there is need for better knowledge of the contributions to overall exposure of outdoor microenvironments and the authors hope that future European directives will take this into account.  相似文献   

8.
This study measures the effect of emissions from an airport on the air quality of surrounding neighborhoods. The ambient concentrations of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) were measured using passive samplers at 15 households located close to the airport (indoor, outdoor, and personal), at the end of airport runways and an out-of-neighborhood location. Measurements occurred over a 48-h period during summer 2006 and winter 2006?C2007. The average concentrations were 0.84, 3.21, 0.30, 0.99, and 0.34 ??g/m3 at the airport runways and 0.84, 3.76, 0.39, 1.22, and 0.39 ??g/m3 in the neighborhood for benzene, toluene, ethylbenzene, m-, p-, and o-xylene. The average neighborhood concentrations were not significantly different to those measured at the airport runways and were higher than the out-of-neighborhood location (0.48, 1.09, 0.15, 0.78, and 0.43 ??g/m3, each BTEX). B/T ratios were used as a tracer for emission sources and the average B/T ratio at the airport and outdoors were 0.20 and 0.23 for the summer and 0.40 and 0.42 for the winter, suggesting that both areas are affected by the same emission source. Personal exposure was closely related to levels in the indoor environment where subjects spent most of their time. Indoor/outdoor (I/O) ratios for BTEX ranged from 1.13 to 2.60 and 1.41 to 3.02 for summer and winter. The seasonal differences in I/O ratios reflected residential ventilation patterns, resulting in increased indoor concentrations of volatile organic compounds during winter.  相似文献   

9.
Air pollution is increasingly recognized as a significant contributor to global health outcomes. A methodological framework for evaluating the global health-related outcomes of outdoor and indoor (household) air pollution is presented and validated for the year 2005. Ambient concentrations of PM2.5 are estimated with a combination of energy and atmospheric models, with detailed representation of urban and rural spatial exposures. Populations dependent on solid fuels are established with household survey data. Health impacts for outdoor and household air pollution are independently calculated using the fractions of disease that can be attributed to ambient air pollution exposure and solid fuel use. Estimated ambient pollution concentrations indicate that more than 80% of the population exceeds the WHO Air Quality Guidelines in 2005. In addition, 3.26?billion people were found to use solid fuel for cooking in three regions of Sub Saharan Africa, South Asia and Pacific Asia in 2005. Outdoor air pollution results in 2.7?million deaths or 23?million disability adjusted life years (DALYs) while household air pollution from solid fuel use and related indoor smoke results in 2.1?million deaths or 41.6?million DALYs. The higher morbidity from household air pollution can be attributed to children below the age of 5 in Sub Saharan Africa and South Asia. The burden of disease from air pollution is found to be significant, thus indicating the importance of policy interventions.  相似文献   

10.
Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people working in the mall, should be of health effect concern.  相似文献   

11.
Despite strong longitudinal associations between particle personal exposures and ambient concentrations, previous studies have found considerable inter-personal variability in these associations. Factors contributing to this inter-personal variability are important to identify in order to improve our ability to assess particulate exposures for individuals. This paper examines whether ambient, home outdoor and home indoor particle concentrations can be used as proxies of corresponding personal exposures. We explore the strength of the associations between personal, home indoor, home outdoor and central outdoor monitoring site ("ambient site") concentrations of sulfate, fine particle mass (PM(2.5)) and elemental carbon (EC) by season and subject for 25 individuals living in the Boston, MA, USA area. Ambient sulfate concentrations accounted for approximately 70 to 80% of the variability in personal and indoor sulfate levels. Correlations between ambient and personal sulfate, however, varied by subject (0.1-1.0), with associations between personal and outdoor sulfate concentrations generally mirroring personal-ambient associations (median subject-specific correlations of 0.8 to 0.9). Ambient sulfate concentrations are good indicators of personal exposures for individuals living in the Boston area, even though their levels may differ from actual personal exposures. The strong associations for sulfate indicate that ambient concentrations and housing characteristics are the driving factors determining personal sulfate exposures. Ambient PM(2.5) and EC concentrations were more weakly associated with corresponding personal and indoor levels, as compared to sulfate. For EC and PM(2.5), local traffic, indoor sources and/or personal activities can significantly weaken associations with ambient concentrations. Infiltration was shown to impact the ability of ambient concentrations to reflect exposures with higher exposures to particles from ambient sources during summer. In contrast in the winter, lower infiltration can result in a greater contribution of indoor sources to PM(2.5) and EC exposures. Placing EC monitors closer to participants' homes may reduce exposure error in epidemiological studies of traffic-related particles, but this reduction in exposure error may be greater in winter than summer. It should be noted that approximately 20% of the EC data were below the field limit of detection, making it difficult to determine if the weaker associations with the central site for EC were merely a result of methodological limitations.  相似文献   

12.
贵阳室内氡时空分布特征研究   总被引:1,自引:0,他引:1  
为了全面分析室内氡的时空分布特征、来源和影响因素,选择了贵阳市不同地理位置的居民住宅、办公场所和公共场所,进行了为期一年的室内氡监测。贵阳市室内氡的平均浓度为(72.7±1.6)Bq/m3,低于室内空气污染国家标准,达标率98.5%。其中居民住宅、办公场所和公共场所的室内氡浓度分别为(93.46±86.93)、(74.68±40.74)、(61±26.93)Bq/m3。研究表明,室内涂料、装修程度和通风效果、小区环境等对室内氡浓度高低有显著影响,室内氡也随季节变化而发生波动。对于居民住宅和公共场所氡的室内外来源相对重要性不同。居民住宅内新楼和旧楼不同楼层室内氡的来源、影响因素和分布特征有显著差异。  相似文献   

13.
Indoor NO2 concentrations were measured in the kitchen, the living room and bedroom of 612 houses in two different areas in the Netherlands. In a group of housewives living in these homes, personal exposure to NO2 was measured. NO2 concentrations indoors were dependent on the presence or absence of (un)vented gas appliances. Personal NO2 exposure was only different between the two areas in the group with the lowest indoor concentrations. In this study, it was determined that gas appliances inside the house are the most important factor with respect to NO2 exposure and that outside NO2 concentration played a secondary role, except in situations where gas appliances were absent.  相似文献   

14.
Concentrations of formaldehyde, acetaldehyde, acetone, propionaldehyde, i-pentanal, and butyraldehyde in residential indoor air in Hangzhou were determined. The mean concentration of the total carbonyl compounds in summer was 222.6 μg/m3, higher than that in winter (68.5 μg/m3). The concentration of a specific carbonyl in indoor air was higher than the outdoor air measurement, indicating the release of carbonyls from the indoor sources. Formaldehyde and acetone were the most abundant carbonyls detected in summer and winter, respectively. Multiple regression analysis indicated that carbonyl concentrations in residential indoor air depended on the age of decoration and furniture, as well as their concentrations in outdoor air. In addition, a primary estimation showed that the health risks of carbonyls in summer were higher than those in winter.  相似文献   

15.
The aim of this study is to examine the relative contribution of the outdoor concentration, the ventilation rate, the geometric characteristics of the indoor environment (i.e., extent of indoor surfaces and indoor volume), the deposition, and chemical reactions to the indoor air quality of the office microenvironment. For this case study, the NO, NO2, and O3 concentrations indoors and outdoors and TVOCs and CO2 concentrations indoors were measured in an office microenvironment in Athens, Greece, that was ventilated both naturally and mechanically. The calculated ventilation and loss rates and the measured outdoor concentrations of NO, NO2, and O3 were set as input to Multi-chamber Indoor Air Quality Model in order to study the temporal variation of the indoor NO, NO2, and O3 concentrations. Results showed that when the ventilation rate and outdoor concentration are high, the relative contribution of the transport process contributes significantly, while the chemical process depends on the contemporary interplay between the indoor O3, NO, and NO2 concentrations and lighting levels. The significance of each process was further examined by performing sensitivity tests, and it was found that the most important parameters were the deposition velocities, the UV infiltration rates (which determines the indoor chemical reaction rates), the ventilation rates, and the filtration (when a mechanical ventilation system is used). The effect of the hydrocarbon chemistry was not significant.  相似文献   

16.
Personal monitoring (PM) for respirable suspended particulate matter (RSP) of thirty subjects was performed as part of an air pollution health effects study conducted in Houston, Texas. Parallel RSP measurements were performed in the study subjects' homes and two fixed site monitoring stations. The participants' daytime activities were independently recorded by study techicians. These data were used to characterize RSP concentrations in each microenvironment visited by the participants. Four estimates of daytime exposure to RSP were calculated based on two different microenvironmental models, and home and fixed site mean daytime RSP concentrations. These estimates were compared to mean daytime personal exposure from PM. Hourly estimates of exposure were calculated from a microenvironmental model and mean hourly home RSP concentrations and compared to hourly PM data. The results of the study indicate that, as in the case of NO2, it is important to characterize indoor microenvironmental RSP concentrations according to location, sources, and concurrent activities, both qualitatively and quantitatively. Stratification of concentrations according to sources present and self-reported activity can lead to misclassification of exposures. For RSP and, probably, other pollutants with indoor sources and with short exposure integration times, adequate measures of exposure can only be obtained with very detailed and complex microenvironmental models or comprehensive personal monitoring.  相似文献   

17.
In order to evaluate the exposure of the northern India rural population to polyaromatic hydrocarbon (PAH) inhalation, indoor pollution was assessed by collecting and analyzing the respirable particulate matter PM2.5 and PM10 in several homes of the village Bhithauli near Lucknow, UP. The home selection was determined by a survey. Given the nature of biomass used for cooking, homes were divided into two groups, one using all kinds of biomass and the second type using plant materials only. Indoor mean concentrations of PM2.5 and associated PAHs during cooking ranged from 1.19 ± 0.29 to 2.38 ± 0.35 and 6.21 ± 1.54 to 12.43 ± 1.15 μg/m3, respectively. Similarly, PM10 and total PAHs were in the range of 3.95 ± 1.21 to 8.81 ± 0.78 and 7.75 ± 1.42 to 15.77 ± 1.05 μg/m3, respectively. The pollutant levels during cooking were significantly higher compared to the noncooking period. The study confirmed that indoor pollution depends on the kind of biomass fuel used for cooking.  相似文献   

18.
The Children's Environment and Health Action Plan for Europe (CEHAPE) of WHO focuses (inter alia) on improving indoor environments where children spend most of their time. At present, only little is known about air pollution in schools and its effect on the lung function of school children. Our project was set up as an Austrian contribution to CEHAPE. In a cross-sectional approach, differences in indoor pollution in nine elementary all-day schools were assessed and 34 of these pollutants were analyzed for a relationship with respiratory health determined by spirometry using a linear regression model. Overall 596 children (aged 6-10 years) were eligible for the study. Spirometry was performed in 433 children. Socio-economic status, area of living (urban/rural), and smoking at home were included in the model as potential confounders with school-related average concentration of air pollutants as the variable of primary interest. A negative association with flow volumes (MEF(75)) was found for formaldehyde in air samples, benzylbutylphthalate and the sum of polybrominated diphenylethers in school dust. FVC and FEV(1) were negatively associated with ethylbenzene and xylenes in air samples and tris(1,3-dichlor-2-propyl)-phosphate on particulates. Although, in general, the quality of school indoor air was not worse than that reported for homes, effects on the respiratory health of children cannot be excluded. A multi-faceted strategy to improve the school environment is needed.  相似文献   

19.
2-Ethyl-1-hexanol is a possibly causative chemical in sick building symptoms, although 2-ethyl-1-hexanol has received little attention as a hazardous substance in studies on indoor air pollution. Airborne 2-ethyl-1-hexanol concentrations were measured from 2002 to 2004 in 99 rooms of 42 non-domestic buildings in Nagoya, Japan. The diffusive sampling method is effective for the measurement of a low level of 2-ethyl-1-hexanol in indoor air. The geometric mean (geometric standard deviation) of 2-ethyl-1-hexanol concentrations was 16.5 (5.4) microg m(-3) in indoor air and 1.9 (2.2) microg m(-3) in outdoor air. The maximum concentration of 2-ethyl-1-hexanol in indoor air and outdoor air was 2709 microg m(-3) and 12.4 microg m(-3), respectively. Fewer rooms in a small number of new buildings showed high concentrations of 2-ethyl-1-hexanol, while low concentrations were observed in many rooms of these buildings as well as the other new buildings. The room-to-room concentrations of 2-ethyl-1-hexanol in each building exhibited a wide variation. The geometric mean of the 2-ethyl-1-hexanol concentrations was significantly higher for indoor air than for outdoor air (p < 0.01). The correlation of the 2-ethyl-1-hexanol concentrations between indoor and outdoor air was not significant. Mechanical ventilation was effective in the temporary reduction of indoor 2-ethyl-1-hexanol level. These results suggest that the predominant source of 2-ethyl-1-hexanol was indoor areas.  相似文献   

20.
Passive sampling of glycol ethers and their acetates in indoor air   总被引:1,自引:0,他引:1  
This study examined the performances of a thermal desorbable radial diffusive sampler for the weekly measurement of eight glycol ethers in indoor air and described the results of an application of this method carried out as part of HABIT'AIR Nord - Pas de Calais program for the air monitoring of these compounds in sixty homes located in northern France. The target compounds were the four glycol ethers banned from sale to the public in France since the 1990s (i.e. 2-methoxy ethanol, 2-ethoxy ethanol and their acetates) and four other glycol ethers derivatives of which the use have increased considerably (i.e. 1-methoxy-2-propanol, 2-butoxy ethanol and their acetates).A test program was carried out with the aim of validating the passive sampling method. It allowed the estimation of all the parameters of a method for each compound (calibration, analytical precision, desorption efficiency, sampling rate in standard conditions, detection limit and stability of sample before and after exposure), the examination of the influence of environmental factors on the sampling rate by some exposure chamber experiments and the assessment of the uncertainty of the measurements.The results of this evaluation demonstrated that the method has turned out to be suitable for six out of eight glycol ethers tested. The effect of the environmental factors on the sampling rates was the main source of measurement uncertainty. The measurements done in sixty homes revealed a relative abundance of 1-methoxy-2-propanol that was found in more than two thirds of homes at concentration levels of 4.5 microg m(-3) on average (a maximum value of 28 microg m(-3)). 1-methoxy-2-propanol acetate and 2-butoxy ethanol were also detected, but less frequently (in 19% of homes) and with the concentrations below 12 microg m(-3). The highest levels of these glycol ethers appear to be in relation to the emissions occurring at the time of cleaning tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号