首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy metal concentrations in soil and earthworms in a floodplain grassland   总被引:3,自引:0,他引:3  
We determined accumulated heavy metal concentrations (Cd, Pb, Cu, Zn) of earthworms in moderately contaminated floodplain soils. Both soil and mature earthworms were sampled before and after flooding and earthworm species were identified to understand species specific differences in bioconcentration. Accumulated metal concentrations in floodplain earthworms differed before and after flooding. Differences in uptake and elimination mechanisms, in food choice and living habitat of the different earthworm species and changes in speciation of the heavy metals are possible causes for this observation. Regression equations taken from literature, that relate metal accumulation by earthworms in floodplains as a function of metal concentration in soil, performed well when all species specific data were combined in an average accumulation, but did not address differences in accumulation between earthworm species.  相似文献   

2.
It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7, 14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another.  相似文献   

3.
This paper compares the patterns of metal (Pb, Zn, Cd, Cu) accumulation in nine populations of the epigeic earthworm, Lumbricus rubellus, native on metalliferous soils, with the patterns of metal accumulation in batches of L. rubellus sampled from an uncontaminated site and maintained on the nine contaminated soils for 31 days under laboratory conditions. The primary findings were: (1) the Pb, Zn and Cd concentrations in the 'native' worms were significantly higher in most cases than in the 'introduced' worms; (2) multiple regression analyses indicated that the relationships between tissue and soil metal concentrations were similar for 'native' and 'introduced' worms; (3) high soil organic matter content reduced the bioavailability of Pb, but low pH increased Pb bioavailability. It was concluded that, although no phenotypic evidence of metal-tolerant ecotypes was obtained, the exposure of earthworms from uncontaminated soils to contaminated soils under laboratory conditions can provide meaningful integrative data concerning metal bioavailability in soils which, for biomonitoring purposes, often present formidable sampling problems.  相似文献   

4.
Earthworms (Lumbricus rebellus and Dendrodrilus rubidus) were sampled from one uncontaminated and fifteen metal-contaminated sites. Significant positive correlations were found between the earthworm and 'total' (conc. nitric acid-extractable) soil Cd, Cu, Pb and Zn concentrations (data log1) transformed). The relationships were linear, and the accumulation patterns for both species were similar when a single metal was considered, even though there were species difference in mean metal concentrations. Generally, the earthworm Cd concentration exceeded that of the soil; by contrast, the worm Pb concentration was lower than the soil Pb concentration in all but one (acidic, low soil Ca) site. Our observations suggest that Cu and Zn accumulation may be physiologically regulated by both species. Total-soil Cd explained 82-86% of the variability (V2) in earthworm Cd concentration; 52-58% of worm Pb and worm Zn concentrations were explained by the total-soil concentrations of the respective metals. Total-soil Cu explained only 11-32% of the worm Cu concentration. The effect of soil pH, total Ca concentration, cation-exchange capacity (CEC) and organic carbon on metal accumulation by L. rubellus and D. rubidus was investigated by multiple regression analysis. Soil pH (coupled with CEC) and soil Ca had a major influence on Pb accumulation (V2 of worm Pb increased to 77-83%), and there was some evidence that Cd accumulation may be suppressed in extremely organic soils. The edaphic factors investigated had no effect on Cu or Zn accumulation by earthworms. In the context of biomonitoring, it is proposed that earthworms have a potential in a dual role: (1) as 'quantitative' monitors of total-soil metal concentrations (as shown for Cd); and (2) as estimators of 'ecologically significant' soil metal, integrating the effects of edaphic factors (as shown for Pb).  相似文献   

5.
The tissue distribution of Cd, Cu, Pb, Zn and Ca in the endogeic earthworm Aporrectodea caliginosa living in a non-polluted and a heavy metal polluted soil was investigated. The tissues of animals from the contaminated soil contained greater concentrations of Cd, Pb and Zn than the corresponding tissues of animals from the unpolluted soil. The greatest concentrations of Cd, Pb, Zn, and Ca were primarily accumulated within the posterior alimentary canal (PAC), a tissue fraction which contained the greatest proportion of the whole-worm burdens of the respective metals. Cu was distributed fairly evenly in the tissue fractions investigated. The pattern of accumulation for the 'heavy' metals is broadly similar to that for epigeic earthworms; in contrast, a different pattern of tissue accumulation was found for Ca. In animals from the uncontaminated site, the major elemental constituents of the chloragosomes were P, Ca, Zn and S. A significant positive correlation exists between P and Ca within the chloragosomal matrix. These intracellular vesicles are major foci for Pb and Zn accumulation within the PAC, with 'excess' metals associated with P ligands within the chloragosome matrix. The incorporation of Pb and Zn appears to involve the cationic displacement of Ca. Such compartmentation appears to prevent dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a detoxification strategy based on accumulative immobilization. No intracellular localization of Cd was identified in the study, although the Cd concentration in the metalliferous soils examined was not exceptionally high. The observations are discussed in the context of a contribution to enhanced understanding of metal ecotoxicology in earthworms by providing baseline data on a little investigated ecophysiological group of earthworms. Comparisons of metal distribution and mechanisms of metal sequestration are made with other ecophysiological groups of earthworms, and the significance of the findings to biomonitoring and toxicity-testing programmes is considered.  相似文献   

6.
We studied whether long-term metal exposure has affected life history traits, population growth patterns and genetic diversity of the asexual enchytraeid worm Cognettia sphagnetorum (Vejd.). Enchytraeids from metal contaminated and uncontaminated forest soil were compared by growing them individually in the laboratory and by following their population development in patchily Cu contaminated microcosms. Genetic differences between the two native populations were studied using allozyme electrophoresis. Individuals from the contaminated site had slower growth rate and they produced fewer fragments of larger size when compared to individuals from the uncontaminated site. In patchily Cu contaminated microcosms, C. sphagnetorum from the contaminated site had a slower population growth rate. Most alleles were shared by the two native populations, but there was greater diversity and more unique genotypes in the population living in the uncontaminated site. Overall, long-term exposure to metals has induced only slight changes in life history properties and clonal diversity of C. sphagnetorum.  相似文献   

7.

The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.

  相似文献   

8.
The effect of heavy metals on the activities of earthworm species Eudrillus eugineae was studied during vermicomposting of municipal solid waste (MSW) spiked with heavy metals. The activities of earthworms, in terms of growth and biomass production and number of cocoons produced, were monitored periodically, and the concentration of heavy metals in earthworms and substrates was determined at definite intervals. Laboratory-scale experiments were performed by mixing individual heavy metals in MSW. Copper, cadmium, chromium, lead, and zinc were selected for the study. The study concludes that heavy metals tend to accumulate in the body of earthworms; hence, the inherent concentration of heavy metals in the substrate before vermicomposting must be considered in view of composting of MSW and its application to soil. It was observed that copper and cadmium were toxic for the worms at 1.5 and 0.1 g/kg of the waste, respectively. The studies also suggest that earthworms are susceptible to the free form of heavy metals. Cadmium is the most toxic metal, followed by copper. Based on the investigation and observation, it was also found that earthworms should be separated from castings before the use of castings in soil amendments.  相似文献   

9.
Metal-contaminated soil, from the El Arteal mining district (SE Spain), was remediated with organic (6 % compost) and inorganic amendments (8 % marble sludge) to reduce the mobility of metals and to modify its potential environmental impact. Different measures of metal bioavailability (chemical analysis; survival, growth, reproduction and bioaccumulation in the earthworm Eisenia andrei), were tested in order to evaluate the efficacy of organic and inorganic amendments as immobilizing agents in reducing metal (bio)availability in the contaminated soil. The inorganic amendment reduced water and CaCl2-extractable concentrations of Cd, Pb, and Zn, while the organic amendment increased these concentrations compared to the untreated soil. The inorganic treatment did not significantly reduce toxicity for the earthworm E. andrei after 28 days exposure. The organic amendment however, made the metal-contaminated soil more toxic to the earthworms, with all earthworms dying in undiluted soil and completely inhibiting reproduction at concentrations higher than 25 %. This may be due to increased available metal concentrations and higher electrical conductivity in the compost-amended soil. No effects of organic and inorganic treatments on metal bioaccumulation in the earthworms were found and metal concentrations in the earthworms increased with increasing total soil concentrations.  相似文献   

10.
A laboratory study of the cadmium and mercury accumulation and elimination kinetics was conducted on the pelecypod Elliptio complanata (Lightfoot) and the short-lived gastropod Viviparus georgianus (Lea), according to age-classes. Preliminary results (metal concentration vs time of exposure) have demonstrated that uptake of Cd and Hg, in the two molluscs studied, follow a biphasic pattern, whereby a steady state is reached after approximately 16 days' exposure and then accumulation increases again for the rest of exposure period. The elimination of the two metals is also characterized in a biphasic way: fast excretion for the first four days followed by a slower depuration for the rest of exposure time. A two-compartment bioaccumulation model has been used to described the different kinetic parameters: (1) the rate constant for depuration; (2) the rate constant for uptake; (3) the theoretical bioconcentration factor extrapolated to steady-state conditions; and (4) the biological half-life of the metals.  相似文献   

11.
Do earthworms impact metal mobility and availability in soil? - A review   总被引:3,自引:0,他引:3  
The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this.  相似文献   

12.
Earthworm communities along a gradient of urbanization   总被引:4,自引:0,他引:4  
Earthworms were studied at six sites along a gradient of urbanization and their relations with several soil abiotic factors were determined. Concentrations of heavy metals, calcium and magnesium in earthworms and in soils were measured by atomic absorption spectroscopy. Strong negative correlations were detected between earthworm density and soil concentrations of cadmium and magnesium. Earthworm biomass was negatively correlated with lead, copper and zinc, and positively correlated with the distance from the centre of the city. High concentrations of Cd and Zn (concentration factors 49 and 32) were accumulated by earthworms in contrast to those of Cu and Pb (2 and 1). Relations between worm and soil concentrations of heavy metals, Ca and Mg are discussed.  相似文献   

13.
We studied Cu resistance in the asexual (reproduction through fragmentation) enchytraeid worms (Cognettia sphagnetorum, Oligochaeta) originating from two sites: one uncontaminated, and another contaminated by heavy metals. Adult worms were smaller and population density was lower at the polluted site. However, adults from the contaminated site had better survival in Cu-contaminated soil, but lower survival as juveniles (fragments). As we do not know the genetic basis of Cu resistance of the worms, it may have been reached by acclimatization via induced Cu regulation. Because fragmentation is the only mode of reproduction, all phenotypic properties (including resistance) of a parental generation could be transferred to filial generations.  相似文献   

14.
A review of studies performed to assess metal uptake by earthworms   总被引:2,自引:0,他引:2  
Earthworms perform a number of essential functions in soil; the impacts of metals on earthworms are often investigated. In this review we consider the range of earthworm species, types of soil and forms of metal for which metal uptake and accumulation have been studied, the design of these experiments and the quantitative relationships that have been derived to predict earthworm metal body burden. We conclude that there is a need for more studies on earthworm species other than Eisenia fetida in order to apply the large existing database on this earthworm to other, soil dwelling species. To aid comparisons between studies agreement is needed on standard protocols that define exposure and depuration periods and the parameters, such as soil solution composition, soil chemical and physical properties to be measured. It is recommended that more field or terrestrial model ecosystem studies using real contaminated soil rather than metal-amended artificial soils are performed.  相似文献   

15.
Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300™ in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment.  相似文献   

16.
This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.  相似文献   

17.
蚯蚓直接处理城市剩余污泥的研究   总被引:1,自引:0,他引:1  
以城市剩余污泥为饲料,根据蚯蚓的繁殖、生长时间,定时引出成蚓换料连续饲养,并改变留在原泥中蚓卵的生存环境来控制卵的发育之蚯蚓养殖方法,并对城市剩余污泥直接饲养蚯蚓的可行性及其重金属转移规律进行研究。结果表明,城市剩余污泥直接饲养蚯蚓是可行的;饲养过程中蚯蚓体内的重金属浓度随着饲养时间而上升,至4个月左右,蚯蚓体内重金属浓度达到极限,且该养殖法具有蚯蚓产量低,对蚯蚓具有易于处理和处置的优点。  相似文献   

18.
Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities.  相似文献   

19.
Site-specific hydrological conditions affect the availability of trace metals for vegetation. In a greenhouse experiment, the effect of submersion on the metal uptake by the wetland plant species Salix cinerea and Populus nigra grown on a contaminated dredged sediment-derived soil and on an uncontaminated soil was evaluated. An upland hydrological regime for the polluted sediment caused elevated Cd concentrations in leaves and cuttings for both species. Emergence and soil oxidation after initial submersion of a polluted sediment resulted in comparable foliar Cd and Zn concentrations for S. cinerea as for the constant upland treatment. The foliar Cd and Zn concentrations were clearly higher than for submerged soils after initial upland conditions. These results point at the importance of submergence-emergence sequence for plant metal availability. The addition of foliar-based organic matter or aluminosilicates to the polluted sediment-derived soil in upland conditions did not decrease Cd and Zn uptake by S. cinerea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号