首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Implication of COVID-19 on medical waste and MSW generation is studied. • Challenges and effective strategy of solid waste generation is reviewed. • 2.9 million tons of COVID-19 related medical waste has been generated until Sep. 22. • The pandemic has postponed policies related to the reduction of plastic use. • Blockade resulted in a significant drop in waste generation in some regions. It has been over ten months since the beginning of the 2019 coronavirus disease (COVID-2019), and its impact on solid waste management, especially medical waste, is becoming clearer. This study systematically reviews the potential influences of the COVID-19 pandemic on medical waste, personal protection equipment waste and municipal solid waste (MSW), and discusses the corresponding measures and policies of solid waste management in typical countries. The results show that the generation of medical waste from the pandemic increased significantly, with 18%‒425% growth. It is estimated that the daily output of COVID-19 medical waste increased from 200 t/d on Feb. 22 to over 29000 t/d at the end of September 2020 throughout the world. The use of personal protective equipment will continue to grow in the long-term, while the blockade and isolation measures greatly reduced the volume of commercial waste, especially for tourist cities, and part of this waste was transferred to household waste. Residents’ attitudes and behavior toward food waste have changed due to the COVID-19 pandemic. In response to the pandemic, international organizations and several countries have issued new policies and guidelines and adjusted their management strategies for medical waste and MSW treatment. The pandemic has brought specific challenges to the disposal capacity of medical waste worldwide. It has also brought about the stagnation of policies related to the reduction of plastic products and waste recycling. This study will provide some useful information for managers and governmental officials on effective solid waste management during and after the COVID-19 pandemic.  相似文献   

2.
• Punishments increase the participation probability of collectors and recyclers. • Policy-sponsored incentives make collectors and recyclers to participate earlier. • Recyclers are more sensitive to government punishments than collectors. Because governments have introduced policies involving incentives and penalties to promote the recycling of plastic waste, it is important to understand the impact of such incentives and penalties on the willingness of stakeholders to participate. In this study, government is included as a player, alongside waste collectors and recyclers, in a tripartite evolutionary game model of plastic waste recycling. The study explores the evolutionary equilibrium and performs a simulation analysis to elucidate the effect of government incentives and penalties on the willingness of other players to participate in recycling. Three conclusions are drawn from this research. First, an increase in incentives or in penalties increases the probability that collectors and recyclers will participate in the recycling process. Second, policy support incentives encourage collectors and recyclers to participate in plastic waste recycling earlier than subsidy incentives do. Finally, recyclers are more sensitive than collectors to government-imposed penalties.  相似文献   

3.
• Fate of microplastics in integrated membrane system for water reuse was investigated. • Integrated membrane system has high removal efficiency (>98%) for microplastics. • Microplastics (>93%) were mainly removed through membrane bioreactor treatment. • Small scale fiber plastics (<200 μm) could break through reverse osmosis (RO) system. • The flux of microplastics maintained at 2.7 × 1011 MPs/d after the RO treatment. Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant was investigated. The removal rate of microplastics in the IMS system reached 93.2% after membrane bioreactor (MBR) treatment while that further increased to 98.0% after the reverse osmosis (RO) membrane process. The flux of microplastics in MBR effluent was reduced from 1.5 × 1013 MPs/d to 10.2 × 1011 MPs/d while that of the RO treatment decreased to 2.7 × 1011 MPs/d. Small scale fiber plastics (<200 μm) could break through RO system according to the size distribution analysis. The application of the IMS system in the reclaimed water plant could prevent most of the microplastics from being discharged in the coastal water. These findings suggested that the IMS system was more efficient than conventional activated sludge system (CAS) for the removal of microplastics, while the discharge of small scale fiber plastics through the IMS system should also not be neglected because small scale fiber plastics (<200 μm) could break through IMS system equipped with the RO system.  相似文献   

4.
• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis. • Reutilize pyrolysis waste tire as micro-electrolysis and electrode materials. • Total nitrogen removal efficiency of modified MFC increased to 85.00%. Candidatus kuenenia and SM1A02 were major genera responsible for nitrogen removal. In this study, microbial fuel cells (MFCs) were explored to promote the nitrogen removal performance of combined anaerobic ammonium oxidation (anammox) and Fe-C micro-electrolysis (CAE) systems. The average total nitrogen (TN) removal efficiency of the modified MFC system was 85.00%, while that of the anammox system was 62.16%. Additionally, the effective operation time of this system increased from six (CAE system alone) to over 50 days, significantly promoting TN removal. The enhanced performance could be attributed to the electron transferred from the anode to the cathode, which aided in reducing nitrate/nitrite in denitrification. The H+ released through the proton exchange membrane caused a decrease in the pH, facilitating Fe corrosion. The pyrolyzed waste tire used as the cathode could immobilize microorganisms, enhance electron transport, and produce a natural Fe-C micro-electrolysis system. According to the microbial community analysis, Candidatus kuenenia was the major genus involved in the anammox process. Furthermore, the SM1A02 genus exhibited the highest abundance and was enriched the fastest, and could be a novel potential strain that aids the anammox process.  相似文献   

5.
• Physical, chemical and biological methods are explored for MPs removal. • Physical methods based on adsorption/filtration are mostly used for MPs removal. • Chemical methods of MPs removal work on coagulation and flocculation mechanism. • MBR technology has also shown the removal of MPs from water. • Global policy on plastic control is lacking. Microplastics are an emerging threat and a big challenge for the environment. The presence of microplastics (MPs) in water is life-threatening to diverse organisms of aquatic ecosystems. Hence, the scientific community is exploring deeper to find treatment and removal options of MPs. Various physical, chemical and biological methods are researched for MPs removal, among which few have shown good efficiency in the laboratory. These methods also have a few limitations in environmental conditions. Other than finding a suitable method, the creation of legal restrictions at a governmental level by imposing policies against MPs is still a daunting task in many countries. This review is an effort to place all effectual MP removal methods in one document to compare the mechanisms, efficiency, advantages, and disadvantages and find the best solution. Further, it also discusses the policies and regulations available in different countries to design an effective global policy. Efforts are also made to discuss the research gaps, recent advancements, and insights in the field.  相似文献   

6.
• The first study on micro(meso)plastics (MMPs) in the Liaohe River Reserve is reported. • Diverse MMP were detected in surface water and sediment at all 32 sites. • The abundance of MMPs decreased in the course of the river. • The MMPs abundance in water is significant association with the county population. Microplastics pollution has received growing attention worldwide in recent years. However, data on microplastics in the freshwater environment are still limited, especially in high-latitude nature reserves in Northern China. The first study on microplastic pollution in the Liaohe River Reserve in Northern China is reported here, and mesoplastics were also incorporated. Surface water and sediment samples were collected from 32 sites along the nature reserve. The abundance, type, shape, color, and size of micro- and mesoplastics were measured using density extraction, optical microscopy, and FTIR spectroscopy. The data showed that diverse micro- and mesoplastics were found widespread in the 32 sites, and the average abundance of these plastics was 0.11±0.04 10−2 items/L in surface water and 62.29±54.30 items/kg in sediment. Moreover, 70% and 66% were smaller than 2000 μm in surface water and sediment, respectively. Fiber accounted for 91.86% in surface water and 43.48% in sediment, indicating that the major source of micro- and mesoplastics in the Liaohe River Reserve may be domestic sewage and aquaculture. A total of 16 and 27 polymers were identified in surface water and sediment, respectively, and mostly consisted of rayon, polyester, polystyrene, and poly(ethylene terephthalate). Moreover, both the risk index and the pollution load index demonstrated a low risk of micro- and mesoplastics in surface water and sediment in the Liaohe River Reserve.  相似文献   

7.
• Pesticide residuals on mulching film of Shandong, Tianjin and Hebei. • Detected 29 pesticides in soil and 30 in mulching film. • Pesticides on plastic films: 86.4‒22213.2 ng/g and in soil: 9.3‒535.3 ng/g. • Pesticides on plastic films 20 times higher than in soil. Plastic debris as new pollutants attracts much attention in the recent years. The plastic mulching films is one of the most important plastic debirs source in the environment. The aim of this work was to investigate the current status of pesticide residues on the plastic mulching films. Based on the QuEChERS method, multi-residue methods for detection of pesticide residues with gas chromatography tandem mass spectrum (GC-MS) and high performance liquid chromatography tandem mass spectrum (HPLC-MS) were developed for the analysis of the pesticides residues in plastic film and soil samples from Tianjin, Hebei and Shandong. The total concentrations of pesticide residues were in the range of 86.4‒22213.2 ng/g in plastic film debris, which was about 20 times higher than that in soil (9.3‒535.3 ng/g). Residual level of pesticides varied greatly in different samples. The historical usage and recent application of pesticides were the main sources for pesticide residues on plastic films and soil. In short, plastic mulching films could act as a sink for pesticides in farmland and the ubiquitous pesticide residues on plastic films should draw more attention.  相似文献   

8.
• Transformation of agro-industrial waste to value-added material via green chemistry. • Orange peel is valorized into fluorescent nanodiamond-like carbon (fNDC) sensor. • fNDC detects potentially hazardous drug atropine sulfate (AS). • fNDC recognizes AS in biological fluids and pharmaceuticals. • fNDC assures applications in clinical and forensic toxicology. Millions of tonnes of agro-industrial waste are generated each year globally, with the vast majority of it going untreated, underutilized, and disposed of by burning or landfilling, causing severe environmental distress and economic downturn. A practical solution to this global issue is to use green chemistry to convert this waste into value-added products. Accordingly, in the present study, agro-industrial orange peel waste was valorized into fluorescent nanodiamond-like carbon sensor via a green route involving hydrothermal treatment of microwave carbonized orange peel waste. The developed sensor, used for the fluorescence detection of potentially hazardous drug atropine sulfate, exhibits unique dual linearity over concentration ranges of 300 nM to 1 M and from 1 M to 10 M, as well as ultra-low sensitivity of 34.42 nM and 356.46 nM, respectively. Additionally, the sensor demonstrates excellent reproducibility, high stability, and satisfactory recovery when used to identify and quantify atropine sulfate in biological samples and commercially available pharmaceuticals, indicating promising multidisciplinary applications.  相似文献   

9.
• Fluorescence staining provides a fast and easy method to quantify microplastics. • Factors that influence staining are summarized to obtain an optimum staining effect. • Natural organic matter can be stained by dye and interfere with quantification. • Fluorescence staining is applied in both field and laboratory studies. • Future work involves developing new dyes and automated image-analysis methods. Understanding the fate and toxicity of microplastics (MPs,<5 mm plastic particles) is limited by quantification methods. This paper summarizes the methods in use and presents new ones. First, sampling and pretreatment processes of MPs, including sample collection, digestion, density separation, and quality control are reviewed. Then the promising and convenient staining procedures and quantification methods for MPs using fluorescence dyes are reviewed. The factors that influence the staining of MPs, including their physicochemical properties, are summarized to provide an optimal operation procedure. In general, the digestion step is crucial to eliminate natural organic matter (NOM) to avoid interference in quantification. Chloroform was reported to be the most appropriate solvent, and 10–20 μg/mL are recommended as optimal dye concentrations. In addition, a heating and cooling procedure is recommended to maintain the fluorescence intensity of MPs for two months. After staining, a fluorescence microscope is usually used to characterize the morphology, mass, or number of MPs, but compositional analysis cannot be determined with it. These fluorescence staining methods have been implemented to study MP abundance, transport, and toxicity and have been combined with other chemical characterization techniques, such as Fourier transform infrared spectroscopy and Raman spectroscopy. More studies are needed to focus on the synthesis of novel dyes to avoid NOM’s interference. They need to be combined with other spectroscopic techniques to characterize plastic composition and to develop image-analysis methods. The stability of stained MPs needs to be improved.  相似文献   

10.
• Economics of food waste treatment projects at 29 pilot cities in China was examined. • Roles of location, population size, processing technique, and income were studied. • Economic benefits were limited with a profit to cost ratio of 0.08±0.37. • Service population size affects construction economics significantly (P = 0.016). • Choice of food waste processing technique affects operating economics notably. This study examines the economic benefits of food waste treatment projects in China and factors affecting them. National-level pilot projects for food waste treatment located in 29 cities were selected as samples. The economics of food waste recycling from the investors’ perspective, in terms of investment during the construction phase and cost and benefit during the operation phase, was assessed. Results indicate that the average tonnage investment of food waste treatment projects was RMB 700.0±188.9 thousand yuan, with a profit to cost ratio of 0.08±0.37. This ratio increased to 0.95±0.57 following the application of government subsidies. It highlights the limited economic benefits of food waste treatment facilities, which rely on government subsidies to maintain their operations in China. Further analysis using a multi-factor analysis model revealed that regional location, service population size, processing techniques, and urban income exerted varying impacts on the economy of food waste treatment. Population size exerted the highest impact (P = 0.016) during the construction stage, and processing techniques notably influenced the project economy during the operation stage. The study highlights the need to prioritize service population size and processing techniques during economic decision-making and management of food waste recycling projects. The results of this study can serve as a valuable practical reference for guiding future policies regarding food waste treatment and related planning.  相似文献   

11.
• MPs were analyzed throughout three WWTPs with mixed domestic–industrial influents. • White polyethylene granules from plastic manufacturing were the most dominant MPs. • MPs abundance in random grab-sampling was lower than that in daily dense sampling. • The production of MPs such as microbeads need to be restricted from the source. In wastewater treatment plants (WWTPs), microplastics (MPs) are complex, especially with mixed domestic–industrial influents. Conventional random grab sampling can roughly depict the distribution and characteristics of MPs but can not accurately reflect their daily fluctuations. In this study, the concentration, shape, polymer type, size, and color of MPs were analyzed by micro-Raman spectroscopy (detection limit of 0.05 mm) throughout treatment stages of three mixed domestic–industrial WWTPs (W1, W2, and W3) in Wuxi City, China, and the daily fluctuations of MPs were also obtained by dense grab sampling within 24 h. For influent samples, the average MP concentration of 392.2 items/L in W1 with 10% industrial wastewater was much higher than those in W2 (71.2 items/L with 10% industrial wastewater) and W3 (38.3 items/L with 60% industrial wastewater). White polyethylene granules with a diameter less than 0.5 mm from plastic manufacturing were the most dominant MPs in the influent of W1, proving the key role of industrial sources in MPs pollution. In addition, the daily dense sampling results showed that MP concentration in W1 influent fluctuated widely between 29.1 items/L and 4617.6 items/L within a day. Finally, few MPs (less than 4.0 items/L) in these WWTPs effluents were attributed to the effective removal of wastewater treatment processes. Thus, further attention should be paid to regulating the primary sources of MPs.  相似文献   

12.
• The promoting effects for VFA generation follow the order of APG>SDBS>HTAB. • Surfactants improve the WAS solubilization/hydrolysis and acidification processes. • The VFA promotion is associated with surfactants’ distinctive characteristics. • Surfactants induce the enrichment of functional bacteria for VFA biosynthesis. • The vital genes for substrates delivery, metabolism, and VFA yields are upregulated. Surfactants were expected to exhibit positive effects on the waste activated sludge (WAS) disposal. However, the systematic comparison of different categories of surfactants on the WAS fermentation and the functional mechanisms, especially microbial metabolic traits, have not yet been precisely explored. This study revealed the positive effects of different surfactants on the volatile fatty acid (VFA) production, which followed the order of alkyl polysaccharides (APG)>sodium dodecylbenzene sulfonate (SDBS)>hexadecyl trimethyl ammonium bromide (HTAB). Mechanistic exploration found that the presence of different surfactants improved solubilization and hydrolysis steps, and then contributed to the subsequent acidification with different efficiencies. The functional microorganisms associated with VFA generation were enriched in surfactant-conditioned reactors. Metagenomic analysis further indicated that the key genes involved in the particular process of VFA generation were over-expressed. The simultaneous bioavailable substrate improvement, functional bacterial enrichment, and metabolic activity upregulation induced by different surfactants jointly contributed to VFA promotion during WAS fermentation. This study could provide a comprehensive realization of surfactants’ impacts on the WAS fermentation process, and more importantly, it reminded the public to discern the distinct interplaying effects induced by different chemicals in regulating the WAS disposal and resource recovery.  相似文献   

13.
• Possible formation pathways of H2S were revealed in thiophene pyrolysis. • The influence of hydrogen radicals on thiophene pyrolysis was examined. • Thiophene decomposition starts with hydrogen transfer between adjacent C atoms. • The presence of hydrogen radicals significantly promotes the formation of H2S. Pyrolysis is an efficient and economical method for the utilization of waste rubber, but the high sulfur content limits its industrial application. Currently, the migration and transformation of the element S during pyrolysis of waste rubber is far from well known. In this work, a density functional theory (DFT) method was employed to explore the possible formation pathways of H2S and its precursors (radicals HS· and S·) during the pyrolysis of thiophene, which is an important primary pyrolytic product of rubber. In particular, the influence of reactive hydrogen radicals was carefully investigated in the thiophene pyrolysis process. The calculation results indicate that the decomposition of thiophene tends to be initiated by hydrogen transfer between adjacent carbon atoms, which needs to overcome an energy barrier of 312.4 kJ/mol. The optimal pathway to generate H2S in thiophene pyrolysis involves initial H migration and S-C bond cleavage, with an overall energy barrier of 525.8 kJ/mol. In addition, a thiol intermediate that bears unsaturated C-C bonds is essential for thiophene pyrolysis to generate H2S, which exists in multiple critical reaction pathways. Moreover, the presence of hydrogen radicals significantly changes the decomposition patterns and reduces the energy barriers for thiophene decomposition, thus promoting the formation of H2S. The current work on H2S formation from thiophene can provide some theoretical support to explore clean utilization technologies for waste rubber.  相似文献   

14.
•Bacterial concentrations from eight stages were 104–105copies/m3. •Diameter influenced clustering of bacterial and HPB lineages. •Dg of 8 HPB ranged from 2.42 to 5.09 μm in composting areas. •Dg of 8 HPB ranged from 3.70 to 8.96 μm in packaging areas. •HPB had high concentrations and small sizes in composting areas. Composting plants are regarded as one of the important sources of environmental bioaerosols. However, limitations in the size distribution of airborne bacteria have prevented our comprehensive understanding of their risk to human health and their dispersal behavior. In this study, different sizes of airborne bacteria were collected using an eight-stage impactor from a full-scale composting facility. Size-related abundance and communities of airborne bacteria as well as human pathogenic bacteria (HPB) were investigated using 16S rRNA gene sequencing coupled with droplet digital PCR. Our results indicate that the bacterial concentrations from the eight stages were approximately 104–105copies/m3. Although no statistical correlation was detected between the particle size and the Shannon index, the influence of size on bacterial lineages was observed in both composting and packaging areas. For airborne bacteria from different stages, the dominant phyla were Firmicutes, Proteobacteria, and Actinobacteria, and the dominant genera was Bacillus. Seven out of eight HPB with a small geometric mean aerodynamic diameter had a high concentration in composting areas. Based on diameters of 2.42 to 5.09 μm, most HPB in the composting areas were expected to be deposited on the bronchus and secondary bronchus. However, in the packaging areas, the deposition of HPB (diameters 3.70 to 8.96 μm) occurred in the upper part of the respiratory tract. Our results on the size distribution, abundance, and diversity of these bacteria offer important information for the systematic evaluation of bacterial pathogenicity and the potential health impacts on workers in composting plants and the surrounding residents.  相似文献   

15.
• Microplastics are widely found in both aquatic and terrestrial environments. • Cleaning products and discarded plastic waste are primary sources of microplastics. • Microplastics have apparent toxic effects on the growth of fish and soil plants. • Multiple strains of biodegradable microplastics have been isolated. Microplastics (MPs) are distributed in the oceans, freshwater, and soil environment and have become major pollutants. MPs are generally referred to as plastic particles less than 5 mm in diameter. They consist of primary microplastics synthesized in microscopic size manufactured production and secondary microplastics generated by physical and environmental degradation. Plastic particles are long-lived pollutants that are highly resistant to environmental degradation. In this review, the distribution and possible sources of MPs in aquatic and terrestrial environments are described. Moreover, the adverse effects of MPs on natural creatures due to ingestion have been discussed. We also have summarized identification methods based on MPs particle size and chemical bond. To control the pollution of MPs, the biodegradation of MPs under the action of different microbes has also been reviewed in this work. This review will contribute to a better understanding of MPs pollution in the environment, as well as their identification, toxicity, and biodegradation in the ocean, freshwater, and soil, and the assessment and control of microplastics exposure.  相似文献   

16.
• TSIBF was composed of ABRS, FRS and HBRS. • THIBF can effectively remove various odors, VOCs and bioaerosols. • Different reaction segments in TSIBF can remove different types of odors and VOCs. • TSIBF can reduce the emission of bioaerosols through enhanced interception. A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.  相似文献   

17.
• A new EK-BIO technology was developed to decontaminate e-waste contaminated soil. • Adding sodium citrate in electrolyte was a good choice for decontaminating the soil. • The system has good performance with low cost. This work investigates the influence of electrokinetic-bioremediation (EK-BIO) on remediating soil polluted by persistent organic pollutants (POPs) and heavy metals (mainly Cu, Pb and Ni), originated from electronic waste recycling activity. The results demonstrate that most of POPs and metals were removed from the soil. More than 60% of metals and 90% of POPs in the soil were removed after a 30-day EK-BIO remediation assisted by citrate. A citrate sodium concentration of 0.02 g/L was deemed to be suitable because higher citrate did not significantly improve treatment performance whereas increasing dosage consumption. Citrate increased soil electrical current and electroosmotic flow. After remediation, metal residues mainly existed in stable and low-toxic states, which could effectively lower the potential hazard of toxic metals to the surrounding environment and organisms. EK-BIO treatment influenced soil microbial counts, dehydrogenase activity and community structure.  相似文献   

18.
• Copyrights on electronic products are impediments in promoting circular economy. • Manufacturers antagonize refurbishment and remanufacturing to maximize profit. • International harmonization of copyright laws will aid repair and remanufacture. • Blockchain–digital immutable ledgers–can promote trust among stakeholders. The concept of zero waste is an ideal situation that will require different solutions for different categories of waste. Electronic waste (E-waste), the fastest growing category of solid hazardous waste presents various unique challenges. Electronic product repair, reuse and remanufacture (3re) are crucial for effective source reduction of E-waste and the integration of the electronics industry into a circular or zero-waste economy framework. Increasingly, 3re implementation is restricted by regulatory difficulties, particularly the invocation of copyright laws. Here, we use the examples of electronic printer cartridges and restored compact discs (CDs) to identify the challenges and to explore solutions for managing the risks associated with E-waste through circular economy and the opportunities presented by innovative Blockchain solutions. A set of international consensuses on judicial definitions, such as 3re, refurbish fake/counterfeit product and copyright exhaustion, are proposed to accelerate source reduction in E-waste management toward the goal of zero waste.  相似文献   

19.
• Copper fractal growth was observed during WPCBs recycling by slurry electrolysis. • Dendrites fractal growth could be controlled by additive during electrodeposition. • Additive was proved to be an effective way to refine the copper crystal. • These findings contribute to enrich the study of slurry electrolysis. Superfine copper particles could be directly prepared from waste printed circuit boards by slurry electrolysis. Meanwhile, copper fractal growth could be observed. To better understand this phenomenon, the factors that affect copper dendrites in a point-cathode system were discussed in detail. These results showed that the fractal degree of copper dendrites increased as the increase of applied voltage and the decrease of copper sulfate and gelatin concentrations. Sodium lauryl sulfate and hydrochloric acid concentrations could not significantly impact the fractal degree of copper dendrites, while gelatin concentration could. The minimum copper fractal dimension was 1.069 when gelatin and copper sulfate concentration was 120 mg/L and 0.1 mol/L, respectively with an applied voltage of 11 V. Moreover, the results diffusion-limited aggregation model demonstrated that particle translational speed, particle numbers and binding probability significantly affected copper dendrite patterns. The scanning electron microscopy results indicated that the three additives greatly affected the refinement of the copper crystal. These findings contribute to enrich the theoretical study on metals recovery from e-waste by slurry electrolysis.  相似文献   

20.
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted. • Waterborne transmission risks are far less perceived by individuals. • Precautions of preventing wastewater mediated transmission are implemented. • The precautions for wastewater transmission are less favored by the public. • Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号