首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• The Taihang Mountains was the boundary between high and low pollution areas. • There were one high value center for PM2.5 pollution and two low value centers. • In 2004, 2009 and after 2013, PM2.5 concentration was relatively low. Over the past 40 years, PM2.5 pollution in North China has become increasingly serious and progressively exposes the densely populated areas to pollutants. However, due to limited ground data, it is challenging to estimate accurate PM2.5 exposure levels, further making it unfavorable for the prediction and prevention of PM2.5 pollutions. This paper therefore uses the mixed effect model to estimate daily PM2.5 concentrations of North China between 2003 and 2015 with ground observation data and MODIS AOD satellite data. The tempo-spatial characteristics of PM2.5 and the influence of meteorological elements on PM2.5 is discussed with EOF and canonical correlation analysis respectively. Results show that overall R2 is 0.36 and the root mean squared predicted error was 30.1 μg/m3 for the model prediction. Our time series analysis showed that, the Taihang Mountains acted as a boundary between the high and low pollution areas in North China; while the northern part of Henan Province, the southern part of Hebei Province and the western part of Shandong Province were the most polluted areas. Although, in 2004, 2009 and dates after 2013, PM2.5 concentrations were relatively low. Meteorological/topography conditions, that include high surface humidity of area in the range of 34°‒40°N and 119°‒124°E, relatively low boundary layer heights, and southerly and easterly winds from the east and north area were common factors attributed to haze in the most polluted area. Overall, the spatial distribution of increasingly concentrated PM2.5 pollution in North China are consistent with the local emission level, unfavorable meteorological conditions and topographic changes.  相似文献   

2.
• The impact of air pollution on AMI/COPD hospital admissions were examined. • Significant connection was found between air pollutants and AMI/COPD in Qingdao. • Nonlinearity exists between air pollution and AMI/COPD hospital admissions. Air pollution has been widely associated with adverse effects on the respiratory and cardiovascular systems. We investigated the relationship between acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and air pollution exposure in the coastal city of Qingdao, China. Air pollution in this region is characterized by inland and oceanic transportation sources in addition to local emission. We examined the influence of PM2.5, PM10, NO2, SO2, CO and O3 concentrations on hospital admissions for AMI and COPD from October 1, 2014, to September 30, 2018, in Qingdao using a Poisson generalized additive model (GAM). We found that PM2.5, PM10, NO2, SO2 and CO exhibited a significant short-term (lag 1 day) association with AMI in the single-pollutant model among older adults (>65 years old) and females, especially during the cold season (October to March). In contrast, only NO2 and SO2 had clear cumulative lag associations with COPD admission for females and those over 65 years old at lag 01 and lag 03, respectively. In the two-pollutant model, the exposure-response relationship fitted by the two-pollutant model did not change significantly. Our findings indicated that there is an inflection point between the concentration of certain air pollutants and the hospital admissions of AMI and COPD even under the linear assumption, indicative of the benefits of reducing air pollution vary with pollution levels. This study has important implications for the development of policy for air pollution control in Qingdao and the public health benefits of reducing air pollution levels.  相似文献   

3.
• PM2.5-related deaths were estimated to be 227 thousand in BTH & surrounding regions. • Local emissions contribute more to PM2.5-related deaths than PM2.5 concentration. • Local controls are underestimated if only considering its impacts on concentrations. • Rural residents suffer larger impacts of regional transport than urban residents. • Reducing regional transport benefits in mitigating environmental inequality. The source-receptor matrix of PM2.5 concentration from local and regional sources in the Beijing-Tianjin-Hebei (BTH) and surrounding provinces has been created in previous studies. However, because the spatial distribution of concentration does not necessarily match with that of the population, such concentration-based source-receptor matrix may not fully reflect the importance of pollutant control effectiveness in reducing the PM2.5-related health impacts. To demonstrate that, we study the source-receptor matrix of the PM2.5-related deaths instead, with inclusion of the spatial correlations between the concentrations and the population. The advanced source apportionment numerical model combined with the integrated exposure–response functions is used for BTH and surrounding regions in 2017. We observed that the relative contribution to PM2.5-related deaths of local emissions was 0.75% to 20.77% larger than that of PM2.5 concentrations. Such results address the importance of local emissions control for reducing health impacts of PM2.5 particularly for local residents. Contribution of regional transport to PM2.5-related deaths in rural area was 22% larger than that in urban area due to the spatial pattern of regional transport which was more related to the rural population. This resulted in an environmental inequality in the sense that people staying in rural area with access to less educational resources are subjected to higher impacts from regional transport as compared with their more resourceful and knowledgeable urban compatriots. An unexpected benefit from the multi-regional joint controls is suggested for its effectiveness in reducing the regional transport of PM2.5 pollution thus mitigating the associated environmental inequality.  相似文献   

4.
•Annual mean PM2.5 in Shijiazhuang were 87, 95, and 82 µg/m3 in 2015–2017. •Health risk of cardiovascular system was higher than respiratory system. •Premature mortality attributed to PM2.5 was 5088 people in 2017. •ΔMort and YLL reduced by 84.2% and 84.6% when PM2.5 reduced to 10 µg/m3. •Health risks due to PM2.5 were severe in Shijiazhuang in 2015–2017. Shijiazhuang is one of the cities in the North China Plain. In recent decades, this city has experienced high levels of fine particulate matter (PM2.5), which have potentially significant effects on human health. In this study, the health effects of PM2.5 exposure in Shijiazhuang were estimated by applying an integrated exposure-response model. Premature mortality, years of life lost (YLL), and the mortality benefits linked to reduced levels of PM2.5 were quantified for the period 2015–2017. In 2015, 2016, and 2017, cerebrovascular diseases caused the highest premature mortality (2432, 2449, and 2483, respectively), followed by ischemic heart diseases (1391, 1479, and 1493, respectively), lung cancer (639,660, and 639, respectively), and chronic obstructive pulmonary diseases (533, 519, and 473, respectively). Notably, the total number of premature deaths caused by PM2.5 exposure in Shijiazhuang in 2015, 2016, and 2017 were 4994, 5107, and 5088, respectively. Moreover, the YLL in the same years were 47001, 47880 and 47381, respectively. Interestingly, the YLL per 1000 females was lower than that per 1000 males. Finally, we noted that premature mortality and YLL decreased by 84.2% and 84.6% when the PM2.5 levels diminished to 10 µg/m3. Overall, the results of this study improve our understanding of how high PM2.5 concentrations affect human health and suggest the application of more stringent measures in Shijiazhuang to alleviate the associated health risks.  相似文献   

5.
• Regional transportation contributed more than local emissions during haze episodes. • Short-range regional transportation contributed the most to the PM2.5 in the OIAs. • Low wind speeds and low PBLHs led to higher local contributions to Beijing. The 2022 Winter Olympics is scheduled to take place in Beijing and Zhangjiakou, which were defined as OIAs (Olympic infrastructure areas) in this study. This study presents the characteristics and source apportionment of PM2.5 in the OIAs, China. The entire region of mainland China, except for the OIAs, was divided into 9 source regions, including four regions in the BTH(Beijing-Tianjin-Hebei) region, the four provinces surrounding the BTH and the remaining areas. Using CAMx/PSAT, the contributions of the nine regions to the PM2.5 concentration in the OIAs were simulated spatially and temporally. The simulated source apportionment results showed that the contribution of regional transportation was 48.78%, and when PM2.5 concentration was larger than 75 μg/m3 central Hebei was the largest contributor with a contribution of 19.18%, followed by Tianjin, northern Hebei, Shanxi, Inner Mongolia, Shandong, southern Hebei, Henan and Liaoning. Furthermore, the contribution from neighboring regions of the OIAs was 47.12%, which was nearly twice that of long-range transportation. Haze episodes were analyzed, and the results presented the importance of regional transportation during severe PM2.5 pollution periods. It was also found that they were associated with differences in pollution sources between Zhangjiakou and Beijing. Regional transportation was the main factor affecting PM2.5 pollution in Zhangjiakou due to its low local emissions. Stagnant weather with a low planetary boundary layer height and a low wind velocity prevented the local emitted pollutants in Beijing from being transported outside, and as a result, local emissions constituted a larger contribution in Beijing.  相似文献   

6.
• The sampling was conducted in city on the Yunnan-Guizhou Plateau for one year. • The groups of PAHs revealed their different environmental fates and migration paths. • Seasonal biomass burning could affect the concentration by long-distance transport. • Industrial sources and traffic emissions were the main contributor of PAHs. • Living in industrial areas or winter had higher health risk by exposure PAHs in PM2.5. Monthly particle-phase ambient samples collected at six sampling locations in Yuxi, a high-altitude city on the edge of Southeast Asia, were measured for particle-associated PAHs. As trace substances, polycyclic aromatic hydrocarbons (PAHs) are susceptible to the influences of meteorological conditions, emissions, and gas-particulate partitioning and it is challenging job to precise quantify the source and define the transmission path. The daily concentrations of total PM2.5-bound PAHs ranged from 0.65 to 80.76 ng/m3, with an annual mean of 11.94 ng/m3. Here, we found that the concentration of PM2.5-bound PAHs in winter was significantly higher than that in summer, which was mainly due to source and meteorology influence. The increase of fossil combustion and biomass burning in cold season became the main contributors of PAHs, while precipitation and low temperature exacerbated this difference. According to the concentration variation trend of PM2.5-bound PAHs and their relationship with meteorological conditions, a new grouping of PAHs is applied, which suggested that PAHs have different environmental fates and migration paths. A combination of source analysis and trajectory model supported local sources from combustion of fossil fuel and vehicle exhaust contributed to the major portion on PAHs in particle, but on the Indochina Peninsula the large number of pollutants emitted by biomass burning during the fire season would affect the composition of PAHs through long-range transporting. Risk assessment in spatial and temporal variability suggested that citizens living in industrial areas were higher health risk caused by exposure the PM2.5-bound PAHs than that in other regions, and the risk in winter was three times than in summer.  相似文献   

7.
• The calculation process and algorithm of response surface model (RSM) were enhanced. • The prediction errors of RSM in the margin and transition areas were greatly reduced. • The enhanced RSM was able to analyze O3-NOx-VOC sensitivity in real-time. • The O3 formations were mainly sensitive to VOC, for the two case study regions. Quantification of the nonlinearities between ambient ozone (O3) and the emissions of nitrogen oxides (NOx) and volatile organic compound (VOC) is a prerequisite for an effective O3 control strategy. An Enhanced polynomial functions Response Surface Model (Epf-RSM) with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model (ERSM) system. The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes. Several comparisons between Epf-RSM and pf-ERSM (polynomial functions based ERSM) were performed using out-of-sample validation, together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams. The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to over-fitting in the margin areas and high biases in the transition areas. The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results. The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January, April, and October, while more NOx-sensitive in July.  相似文献   

8.
● Increased DAAO offsets 3/4 of the decrease of DAAP in 2013–2020. ● DAAO increases are mainly due to O3 concentration increase and population aging. ● Health benefit from PM2.5 reduction after 2017 is larger than that before 2017. ● Reducing PM2.5 concentration by 1% results in 0.6% reduction of DAAP. ● Reducing O3 concentration by 1% results in 2% reduction of DAAO. PM2.5 concentration declined significantly nationwide, while O3 concentration increased in most regions in China in 2013–2020. Recent evidences proved that peak season O3 is related to increased death risk from non-accidental and respiratory diseases. Based on these new evidences, we estimate excess deaths associated with long-term exposure to ambient PM2.5 and O3 in China following the counterfactual analytic framework from Global Burden Disease. Excess deaths from non-accidental diseases associated with long-term exposure to ambient O3 in China reaches to 579 (95% confidential interval (CI): 93, 990) thousand in 2020, which has been significantly underestimated in previous studies. In addition, the increased excess deaths associated with long-term O3 exposure (234 (95% CI: 177, 282) thousand) in 2013–2020 offset three quarters of the avoided excess deaths (302 (95% CI: 244, 366) thousand) mainly due to PM2.5 exposure reduction. In key regions (the North China Plain, the Yangtze River Delta and the Fen-Wei Plain), the former is even larger than the latter, particularly in 2017–2020. Health benefit of PM2.5 concentration reduction offsets the adverse effects of population growth and aging on excess deaths attributed to PM2.5 exposure. Increase of excess deaths associated with O3 exposure is mainly due to the strong increase of O3 concentration, followed by population aging. Considering the faster population aging process in the future, collaborative control, and faster reduction of PM2.5 and O3 are needed to reduce the associated excess deaths.  相似文献   

9.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   

10.
• Light haze had little effect on bacterial communities. • Fog and heavy haze had significant effects on these communities. • Air pollution exerted a greater influence than particle size on bacterial community. Here, we report the characteristics of bacterial communities in aerosols with different particle sizes during two persistent fog and haze events in December of 2015 and 2016 in Qingdao, China. In the early stage of pollution, the accumulation of PM2.5 led to the accumulation of microorganisms, thus increasing the bacterial richness and diversity of fine particle sizes. With the persistence and aggravation of pollution, the toxic effect was strengthened, and the bacterial richness and diversity of each particle size decreased. When the particle concentration was highest, the richness and diversity were low for each particle size. Light haze had little influence on bacterial communities. The occurrence of highly polluted humid weather and heavy haze resulted in significant changes in bacterial community diversity, composition and structure, and air pollution exerted a greater influence than particle size on bacterial community structure. During persistent fog and haze events, with the increase of pollutants, bacteria associated with each particle size may be extensively involved in aerosol chemistry, but the degree of participation varies, which requires further study.  相似文献   

11.
• Humification evolution was identified with non-destructive characterization method. • Humification process from precursors to fulvic and humic acid was confirmed. • MnO2 alone had limited oxidation ability to form HA. • MnO2 played a key role as a catalyst to transform FA to HA in the presence of O2. • MnO2 could affect the structure of the humification products. Abiotic humification is important in the formation and evolution of organic matter in soil and compost maturing processes. However, the roles of metal oxides in abiotic humification reactions under micro-aerobic remain ambiguous. The aim of this study was to use non-destructive measurement methods to investigate the role of MnO2 in the evolution of humic substances (HSs) during oxidative polymerization of polyphenol-amino acid. Our results suggested a synergistic effect between MnO2 and O2 in promoting the polymerization reaction and identified that MnO2 alone had a limited ability in accelerating the transformation of fulvic acid (FA) to humic acid (HA), whereas O2 was the key factor in the process. Two-dimensional correlation spectroscopy (2D-COS) showed that the evolution in the UV-vis spectra followed the order of 475–525 nm>300–400 nm>240–280 nm in the humification process, indicating the formation of simple organic matter followed by FA and then HA. 13C nuclear magnetic resonance (13C NMR) analysis revealed that the products under both air and N2 conditions in the presence of MnO2 had greater amounts of aromatic-C than in the absence of MnO2, demonstrating that MnO2 affected the structure of the humification products. The results of this study provided new insights into the theory of abiotic humification.  相似文献   

12.
• Characteristics and interannual variation of aerosol pollution are illustrated. • Mechanisms of secondary aerosol formation in winter haze of North China are reviewed. • Directions in future studies of secondary aerosol formation are provided. Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei (BTH) region (China), exerting profound impacts on air quality, visibility, and human health. The Chinese Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in the annual mean PM2.5 concentration over this region. However, the level of secondary aerosols during heavy haze episodes showed little decrease during this period. During heavy haze episodes, the concentrations of secondary aerosol components, including sulfate, nitrate and secondary organics, in aerosol particles increase sharply, acting as the main contributors to aerosol pollution. To achieve effective control of particle pollution in the BTH region, the precise and complete secondary aerosol formation mechanisms have been investigated, and advances have been made about the mechanisms of gas phase reaction, nucleation and heterogeneous reactions in forming secondary aerosols. This paper reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region, lays out the challenges in haze formation studies, and provides implications and directions for future research.  相似文献   

13.
• Submerged arc plasma was introduced in terms of wastewater treatment. • Ozone oxidation was coupled with submerged arc plasma system. • Ozone was converted into O and O2 by submerged arc plasma. • Decomposition rate was accelerated by submerged arc plasma. • Introduction of ozone led to significant increase in mineralization. Submerged arc plasma technology was assessed for the removal of phenols from wastewater. The OH radicals generated from the boundary between the plasma and waste solution were considered as a significant factor on the degradation reaction. In this study, the effects of highly energetic electrons released from the submerged arc plasma were mainly studied. The highly energetic electrons directly broke the strong chemical bond and locally increased the reaction temperatures in solution. The effects of the submerged-arc plasma on the decomposition of phenol are discussed in terms of the input energy and initial concentration. The single use of submerged arc plasma easily decomposed the phenol but did not increase the mineralization efficiency. Therefore, the submerged arc plasma, coupled with the ozone injection, was investigated. The submerged arc plasma combined with ozone injection had a synergic effect, which led to significant improvements in mineralization with only a small increase in input energy. The decomposition mechanism of phenol by the submerged arc plasma with the ozone was analyzed.  相似文献   

14.
• Air masses from Zhejiang Province is the major source of O3 in suburban Shanghai. • O3 formation was in VOC-sensitive regime in rural Shanghai. • O3 formation was most sensitive to propylene in rural Shanghai. A high level of ozone (O3) is frequently observed in the suburbs of Shanghai, the reason for this high level remains unclear. To obtain a detailed insight on the high level of O3 during summer in Shanghai, O3 and its precursors were measured at a suburban site in Shanghai from July 1, 2016 to July 31, 2016. Using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and concentration weighted trajectories (CWT), we found that Zhejiang province was the main potential source of O3 in suburban Shanghai. When the sampling site was controlled by south-western winds exceeding 2 m/s, the O3-rich air masses from upwind regions (such as Zhejiang province) could be transported to the suburban Shanghai. The propylene-equivalent concentration (PEC) and ozone formation potential (OFP) were further calculated for each VOC species, and the results suggested that propylene, (m+p)-xylene, and toluene played dominant roles in O3 formation. The Ozone Isopleth Plotting Research (OZIPR) model was used to reveal the impact of O3 precursors on O3 formation, and 4 base-cases were selected to adjust the model simulation. An average disparity of 18.20% was achieved between the simulated and observed O3 concentrations. The O3 isopleth diagram illustrated that O3 formation in July 2016 was in VOC-sensitive regime, although the VOC/NOx ratio was greater than 20. By introducing sensitivity (S), a sensitivity analysis was performed for O3 formation. We found that O3 formation was sensitive to propylene, (m+p)-xylene, o-xylene and toluene. The results provide theoretical support for O3 pollution treatment in Shanghai.  相似文献   

15.
• Metal pollution was studied in riverine sediments from different land-use areas. • Cd was the most serious heavy metal contaminant in riverine sediment cores. • Riverine sediment cores from industrial area were most polluted by heavy metals. • B1 fraction determined metal pollution, risk and toxicity in riverine sediments. Anthropogenic activities are regarded as the main sources of heavy metal pollution, yet few studies have investigated the effects of land-use setting on heavy metal accumulation in riverine sediments. Based on both total contents and geochemical fractions, heavy metal pollution, risk and toxicity were determined in riverine sediment cores from different land-use areas (mountain area- MA, farm area- FA, city area- CA, and industrial area- IA) of the Yang River Basin in North China. The results showed that FA had higher contents of riverine sedimentary Cu; CA had higher contents of Cd; IA had higher contents of both Cd and Zn. Most riverine sediments from FA and IA were contaminated with the investigated metals, although these concentrations were evaluated to have low potential ecological risk and no toxicity to benthic organisms. However, a high proportion of Cd in the B1 fraction of riverine sediments in IA indicating high risk should receive more attention. The B1 fraction largely determined the contamination, risk and toxicity levels associated with heavy metals in the riverine sediments of the Yang River Basin.  相似文献   

16.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   

17.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

18.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

19.
• Urban aerosols harbour diverse bacterial communities in Shanghai. • The functional groups were associated with nitrogen, carbon, and sulfur cycling. • Temperature, SO2, and wind speed were key drivers for the bacterial community. Airborne bacteria play key roles in terrestrial and marine ecosystems and human health, yet our understanding of bacterial communities and their response to the environmental variables lags significantly behind that of other components of PM2.5. Here, atmospheric fine particles obtained from urban and suburb Shanghai were analyzed by using the qPCR and Illumina Miseq sequencing. The bacteria with an average concentration of 2.12 × 103 cells/m3, were dominated by Sphingomonas, Curvibacter, Acinetobacter, Bradyrhizobium, Methylobacterium, Halomonas, Aliihoeflea, and Phyllobacterium, which were related to the nitrogen, carbon, sulfur cycling and human health risk. Our results provide a global survey of bacterial community across urban, suburb, and high-altitude sites. In Shanghai (China), urban PM2.5 harbour more diverse and dynamic bacterial populations than that in the suburb. The structural equation model explained about 27%, 41%, and 20%–78% of the variance found in bacteria diversity, concentration, and discrepant genera among urban and suburb sites. This work furthered the knowledge of diverse bacteria in a coastal Megacity in the Yangtze river delta and emphasized the potential impact of environmental variables on bacterial community structure.  相似文献   

20.
• SMX was mainly degraded by hydrolysis, isoxazole oxidation and double-bond addition. • Isoxazole oxidation and bond addition products were formed by direct ozonation. • Hydroxylated products were produced by indirect oxidation. • NOM mainly affected the degradation of SMX by consuming OH rather than O3. • Inhibitory effect of NOM on SMX removal was related to the components’ aromaticity. Sulfamethoxazole (SMX) is commonly detected in wastewater and cannot be completely decomposed during conventional treatment processes. Ozone (O3) is often used in water treatment. This study explored the influence of natural organic matters (NOM) in secondary effluent of a sewage treatment plant on the ozonation pathways of SMX. The changes in NOM components during ozonation were also analyzed. SMX was primarily degraded by hydrolysis, isoxazole-ring opening, and double-bond addition, whereas hydroxylation was not the principal route given the low maximum abundances of the hydroxylated products, with m/z of 269 and 287. The hydroxylation process occurred mainly through indirect oxidation because the maximum abundances of the products reduced by about 70% after the radical quencher was added, whereas isoxazole-ring opening and double-bond addition processes mainly depended on direct oxidation, which was unaffected by the quencher. NOM mainly affected the degradation of micropollutants by consuming OH rather than O3 molecules, resulting in the 63%–85% decrease in indirect oxidation products. The NOM in the effluent were also degraded simultaneously during ozonation, and the components with larger aromaticity were more likely degraded through direct oxidation. The dependences of the three main components of NOM in the effluent on indirect oxidation followed the sequence: humic-like substances>fluvic-like substances>protein-like substances. This study reveals the ozonation mechanism of SMX in secondary effluent and provides a theoretical basis for the control of SMX and its degradation products in actual water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号