首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
• UV/chlorine can effectively remove VBNC pathogens, ARGs and MGEs in reclaimed water. • Microbial community was changed with reduced diversity during UV/chlorine process. • CRBs-carried MGEswere the predominant groups during UV/chlorine process. • No direct co-selection strategy was shared between UV/chlorine and resistome. Urban wastewater contains a wide range of pathogens and antibiotic resistance genes (ARGs), which are a serious concern if reusing treated wastewater. However, few studies have explored the microbial communities in reclaimed water using ultraviolet (UV)/chlorine treatment and assessed the changes of the resistome. This study investigated the occurrence of typical pathogens, ARGs, and bacterial communities in UV/chlorine-treated reclaimed water samples. The numbers of culturable and viable but non-culturable pathogens were effectively reduced to 0 CFU/mL within 1–10 and 10–30 min after UV/chlorine treatment, respectively. Meanwhile, the physicochemical indices of water quality were not affected. UV/chlorine treatment could significantly change the bacterial community structure of reclaimed water, showing a decrease in bacterial abundance and diversity. Chlorine-resistant Acinetobacter and Mycobacterium were the dominant bacterial genera (>50%) after UV/chlorine treatment. Moreover, the number of ARGs and mobile genetic elements (MGEs) decreased with an increase in UV/chlorine exposure. However, eight ARGs and three MGEs were consistently detected in more than three seasons, making these major concerns because of their potential role in the persistence and dissemination of antibiotic resistance. Overall, the results of this study suggest that UV/chlorine treatment can potentially improve the microbiological safety of reclaimed water. And more attention should be paid to the pathogens that are both chlorine-resistant and carry MGEs because of their potential for resistance transmission.  相似文献   

2.
•Phages can be better indicators of enteric viruses than fecal indicator bacteria. •Multiple phages should be added to the microbial source tracking toolbox. •Engineered phage or phage cocktail can effectively target resistant bacteria. •In phage use, phage-mediated horizontal gene transfer cannot be ignored. •More schemes are needed to prevent phage concentration from decreasing. Wastewater is a breeding ground for many pathogens, which may pose a threat to human health through various water transmission pathways. Therefore, a simple and effective method is urgently required to monitor and treat wastewater. As bacterial viruses, bacteriophages (phages) are the most widely distributed and abundant organisms in the biosphere. Owing to their capacity to specifically infect bacterial hosts, they have recently been used as novel tools in water pollution control. The purpose of this review is to summarize and evaluate the roles of phages in monitoring pathogens, tracking pollution sources, treating pathogenic bacteria, infecting bloom-forming cyanobacteria, and controlling bulking sludge and biofilm pollution in wastewater treatment systems. We also discuss the limitations of phage usage in water pollution control, including phage-mediated horizontal gene transfer, the evolution of bacterial resistance, and phage concentration decrease. This review provides an integrated outlook on the use of phages in water pollution control.  相似文献   

3.
• Quantitative global ARGs profile in dialysis water was investigated. • Totally 35 ARGs were found in the dialysis treatment train. • 29 ARGs (highest) were found in carbon filtration effluent. erm and mtrD-02 occurred in the final effluent. • The effluent was associated with health risks even after RO treatment. Dialysis water is directly related to the safety of hemodialysis patients, thus its quality is generally ensured by a stepwise water purification cascade. To study the effect of water treatment on the presence of antibiotic resistance genes (ARGs) in dialysis water, this study used propidium monoazide (PMA) in conjunction with high throughput quantitative PCR to analyze the diversity and abundance of ARGs found in viable bacteria from water having undergone various water treatment processes. The results indicated the presence of 35 ARGs in the effluents from the different water treatment steps. Twenty-nine ARGs were found in viable bacteria from the effluent following carbon filtration, the highest among all of the treatment processes, and at 6.96 Log (copies/L) the absolute abundance of the cphA gene was the highest. Two resistance genes, erm (36) and mtrD-02, which belong to the resistance categories macrolides-lincosamides-streptogramin B (MLSB) and other/efflux pump, respectively, were detected in the effluent following reverse osmosis treatment. Both of these genes have demonstrated the potential for horizontal gene transfer. These results indicated that the treated effluent from reverse osmosis, the final treatment step in dialysis-water production, was associated with potential health risks.  相似文献   

4.
• PPCPs had the highest removal efficiency in A2O combined with MBR process (86.8%). • ARGs and OPFRs were challenging to remove (6.50% and 31.0%, respectively). • Octocrylene and tris(2-ethylhexyl) phosphate posed high risks to aquatic organisms. • Meta-analysis was used to compare the ECs removal in wastewater treatment. • Membrane treatment technology is the most promising treatment for ECs removal. Reclaimed water has been widely applied in irrigation and industrial production. Revealing the behavior of emerging contaminants in the production process of reclaimed water is the first prerequisite for developing relevant water quality standards. This study investigated 43 emerging contaminants, including 22 pharmaceuticals and personal care products (PPCPs), 11 organophosphorus flame retardants (OPFRs), and 10 antibiotic resistance genes (ARGs) in 3 reclaimed wastewater treatment plants (RWTPs) in Beijing. The composition profiles and removal efficiencies of these contaminants in RWTPs were determined. The results indicated that the distribution characteristics of the different types of contaminants in the three RWTPs were similar. Caffeine, sul2 and tris(1-chloro-2-propyl) phosphate were the dominant substances in the wastewater, and their highest concentrations were 27104 ng/L, 1.4 × 107 copies/mL and 262 ng/L, respectively. Ofloxacin and sul2 were observed to be the dominant substances in the sludge, and their highest concentrations were 5419 ng/g and 3.7 × 108 copies/g, respectively. Anaerobic/anoxic/oxic system combined with the membrane bioreactor process achieved a relatively high aqueous removal of PPCPs (87%). ARGs and OPFRs were challenging to remove, with average removal rates of 6.5% and 31%, respectively. Quantitative meta-analysis indicated that tertiary treatment processes performed better in emerging contaminant removal than secondary processes. Diethyltoluamide exhibited the highest mass load discharge, with 33.5 mg/d per 1000 inhabitants. Octocrylene and tris(2-ethylhexyl) phosphate posed high risks (risk quotient>1.0) to aquatic organisms. This study provides essential evidence to screen high priority pollutants and develop corresponding standard in RWTPs.  相似文献   

5.
• A Passive Aeration Ditch was developed to treat decentralized wastewater. • A model was developed to describe the process performance. • A high C/N ratio facilitates microbial growth but nitrification deteriorates. • A high salinity decreases both organic and nitrogen contaminants removal. Decentralized wastewater containing elevated salinity is an emerging threat to the local environment and sanitation in remote coastal communities. Regarding the cost and treatment efficiencies, we propose a passive aeration ditch (PAD) using non-woven polyester fabric as a feasible bubbleless aerator and biofilm carrier for wastewater treatment. Consideration has been first given to PAD’s efficacy in treating saline decentralized wastewater, and then to the impact of chemical oxygen demand-to-nitrogen (C/N) ratio and salinity on biofilm formation. A multispecies model incorporating the salinity effect has been developed to depict the system performance and predict the microbial community. Results showed that the PAD system had great capacity for pollutants removal. The biofilm thickness increased at a higher C/N ratio because of the boost of aerobic heterotrophs and denitrifying bacteria, which consequently improved the COD and total nitrogen removal. However, this led to the deterioration of ammonia removal. Moreover, while a higher salinity benefited the biofilm growth, the contaminant removal efficiencies decreased because the salinity inhibited the activity of aerobic heterotrophs and reduced the abundance of nitrifying bacteria inside the biofilm. Based on the model simulation, feed water with salinity below 2% and C/N ratio in a range of 1 to 3 forms a biofilm that can reach relatively high organic matter and ammonia removal. These findings not only show the feasibility of PAD in treatment of saline decentralized wastewater, but also offer a systematic strategy to predict and optimize the process performance.  相似文献   

6.
• A full scale biofilm process was developed for typical domestic wastewater treatment. • The HRT was 8 h and secondary sedimentation tank was omitted. Candidatus Brocadia were enriched in the HBR with an abundance of 2.89%. • Anammox enabled a stable ammonium removal of ~15% in the anoxic zone. The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems. Herein, a 300 m3/d hybrid biofilm reactor (HBR) process was developed and operated with a short hydraulic retention time (HRT) of 8 h. The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process. The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33% at Day 130 and then to 2.89% at Day 213. Based upon the activity of anammox bacteria, the removal of ammonia nitrogen (NH4+-N) in the anoxic zone was approximately 15%. This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone. The final effluent contained 12 mg/L chemical oxygen demand (COD), 0.662 mg/L NH4+-N, 7.2 mg/L total nitrogen (TN), and 6 mg/L SS, indicating the effectiveness of the HBR process for treating real domestic wastewater.  相似文献   

7.
• Total 174 subtypes of ARGs were detected by metagenomic analysis. • Chloramphenicol resistance genes were the dominant ARGs in water and microplastics. • The abundances of MRGs were much higher than those of ARGs. • Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phylum. • Microplastics in mariculture system could enrich most of MRGs and some ARGs. Microplastics existing widely in different matrices have been regarded as a reservoir for emerging contaminants. Mariculture systems have been observed to host microplastics and antibiotic resistance genes (ARGs). However, more information on proliferation of ARGs and metal resistance genes (MRGs) in mariculture system at the presence of microplastics is needed. This study used metagenomic analysis to investigate the distribution of ARGs and MRGs in water and microplastics of a typical mariculture pond. Total 18 types including 174 subtypes of ARGs were detected with the total relative abundances of 1.22/1.25 copies per 16S rRNA copy for microplastics/water. Chloramphenicol resistance genes were the dominant ARGs with the abundance of 0.35/0.42 copies per 16S rRNA copy for microplastics/water. Intergron intI1 was dominant gene among 6 detected mobile genetic elements (MGEs) with the abundance of 75.46/68.70 copies per 16S rRNA copy for water/microplastics. Total 9 types including 46 subtypes of MRGs were detected with total abundance of 5.02 × 102/6.39 × 102 copies per 16S rRNA copy for water/ microplastics while genes resistant to copper and iron served as the dominant MRGs. Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 84.2%/89.5% of total microbial community. ARGs with relatively high abundance were significantly positively related to major genera, MGEs, and MRGs. Microplastics in mariculture system could enrich most of MRGs and some ARGs to serve as potential reservoir for these pollutants. The findings of this study will provide important information on resistance gene pollution at presence of microplastics in the mariculture system for further proposing suitable strategy of environmental management.  相似文献   

8.
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted. • Waterborne transmission risks are far less perceived by individuals. • Precautions of preventing wastewater mediated transmission are implemented. • The precautions for wastewater transmission are less favored by the public. • Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19.  相似文献   

9.
• Manure fertilization resulted in antibiotic residues and increased metal contents. • The tet and sul genes were significantly enhanced with manure fertilization. • Soil physicochemical properties contributed to 12% of the variations in ARGs. • Soil metals and antibiotics co-select for ARGs. Pig manure, rich in antibiotics and metals, is widely applied in paddy fields as a soil conditioner, triggering the proliferation of antibiotic resistance genes (ARGs) in soil. However, comprehensive studies on the effects of manure fertilization on the abundance of ARGs and their influencing factors are still insufficient. Here, pig manure and manure-amended and inorganic-amended soils were collected from 11 rice-cropping regions in eastern China, and the accumulation of antibiotics, metals, and ARGs was assessed simultaneously. The results showed that manure fertilization led to antibiotic residues and increased the metal content (i.e., Zn, Cu, Ni, and Cr). Tetracycline and sulfonamide resistance genes (tetM, tetO, sul1, and sul2) were also significantly enhanced with manure fertilization. According to variance partitioning analysis, the most important factors that individually influenced ARGs were soil physicochemical properties, accounting for 12% of the variation. Significant correlations between soil nutrients and ARGs indicated that manure application enhanced the growth of resistant microorganisms by supplying more nutrients. Metals and antibiotics contributed 9% and 5% to the variations in ARGs, respectively. Their co-occurrence also increased the enrichment of ARGs, as their interactions accounted for 2% of the variation in ARGs. Interestingly, Cu was significantly related to most ARGs in the soil (r = 0.26–0.52, p<0.05). Sulfapyridine was significantly related to sul2, and tetracycline resistance genes were positively related to doxycycline. This study highlighted the risks of antibiotic and ARG accumulation with manure fertilization and shed light on the essential influencing factors of ARGs in paddy soils.  相似文献   

10.
• Published data was used to analyze the fate of ARGs in water treatment. • Biomass removal leads to the reduction in absolute abundance of ARGs. • Mechanism that filter biofilm maintain ARB/ARGs was summarized. • Potential BAR risks caused by biofiltration and chlorination were proposed. The bacterial antibiotic resistome (BAR) is one of the most serious contemporary medical challenges. The BAR problem in drinking water is receiving growing attention. In this study, we focused on the distribution, changes, and health risks of the BAR throughout the drinking water treatment system. We extracted the antibiotic resistance gene (ARG) data from recent publications and analyzed ARG profiles based on diversity, absolute abundance, and relative abundance. The absolute abundance of ARG was found to decrease with water treatment processes and was positively correlated with the abundance of 16S rRNA (r2 = 0.963, p<0.001), indicating that the reduction of ARG concentration was accompanied by decreasing biomass. Among treatment processes, biofiltration and chlorination were discovered to play important roles in shaping the bacterial antibiotic resistome. Chlorination exhibited positive effects in controlling the diversity of ARG, while biofiltration, especially granular activated carbon filtration, increased the diversity of ARG. Both biofiltration and chlorination altered the structure of the resistome by affecting relative ARG abundance. In addition, we analyzed the mechanism behind the impact of biofiltration and chlorination on the bacterial antibiotic resistome. By intercepting influent ARG-carrying bacteria, biofilters can enrich various ARGs and maintain ARGs in biofilm. Chlorination further selects bacteria co-resistant to chlorine and antibiotics. Finally, we proposed the BAR health risks caused by biofiltration and chlorination in water treatment. To reduce potential BAR risk in drinking water, membrane filtration technology and water boiling are recommended at the point of use.  相似文献   

11.
• Comammox bacteria have unique physiological characteristics. • Comammox bacteria are widely distributed in natural and artificial systems. • Comammox bacteria have the potential to reduce N2O emissions. • Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment. • Comammox bacteria have significant potential for enhancing total nitrogen removal. Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.  相似文献   

12.
• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD. • Thermophilic AD was more effective in eliminating resistance genes than mesophilic. • ARGs variations in AD were mainly affected by succession of microbial community. • Methane production was significant associated to ARGs reduction. The role of norfloxacin (NOR) and sulfamethoxazole (SMX) in mesophilic and thermophilic anaerobic digestion (AD) of pig manure, with respect to methane production and variations in the microbial community and resistance genes, including antibiotic resistance genes (ARGs), class I integrase (intI1), and heavy metal resistance genes (MRGs), was investigated. The results indicated that NOR exerted little influence on the microbial community, whereas SMX negatively affected the acetoclastic methanogens. The abundance of two sulfonamide resistance genes (sul1 and sul2), three quinolone resistance genes (qnrS, parC, and aac(6’)-Ib-cr), and intI1 decreased by 2‒3 orders of magnitude at the end of thermophilic AD. In contrast, mesophilic AD was generally ineffective in reducing the abundance of resistance genes. According to the results of redundancy analysis, the abundance of ARGs was affected primarily by microbial community dynamics (68.5%), rather than the selective pressure due to antibiotic addition (13.3%). Horizontal gene transfer (HGT) through intI1 contributed to 26.4% of the ARG variation. The archaeal community also influenced the changes in the resistance genes, and ARG reduction was significantly correlated with enhanced methane production. Thermophilic AD presented a higher methane production potential and greater reduction in resistance gene abundance.  相似文献   

13.
• Urban aerosols harbour diverse bacterial communities in Shanghai. • The functional groups were associated with nitrogen, carbon, and sulfur cycling. • Temperature, SO2, and wind speed were key drivers for the bacterial community. Airborne bacteria play key roles in terrestrial and marine ecosystems and human health, yet our understanding of bacterial communities and their response to the environmental variables lags significantly behind that of other components of PM2.5. Here, atmospheric fine particles obtained from urban and suburb Shanghai were analyzed by using the qPCR and Illumina Miseq sequencing. The bacteria with an average concentration of 2.12 × 103 cells/m3, were dominated by Sphingomonas, Curvibacter, Acinetobacter, Bradyrhizobium, Methylobacterium, Halomonas, Aliihoeflea, and Phyllobacterium, which were related to the nitrogen, carbon, sulfur cycling and human health risk. Our results provide a global survey of bacterial community across urban, suburb, and high-altitude sites. In Shanghai (China), urban PM2.5 harbour more diverse and dynamic bacterial populations than that in the suburb. The structural equation model explained about 27%, 41%, and 20%–78% of the variance found in bacteria diversity, concentration, and discrepant genera among urban and suburb sites. This work furthered the knowledge of diverse bacteria in a coastal Megacity in the Yangtze river delta and emphasized the potential impact of environmental variables on bacterial community structure.  相似文献   

14.
• Energy is needed to accelerate the biological wastewater treatment. • Electrical energy input in traditional technology is indirect and inefficient. • Direct injection of electricity can be a game changer to maximize energy efficiency. • Microbial electrochemical unit for decentralized wastewater treatment is proposed. It has been more than one century since the activated sludge process was invented. Despite its proven stability and reliability, the energy (especially the electrical energy) use in wastewater treatment should evolve to meet the increasingly urgent demand of energy efficiency. This paper discusses how the energy utilized in conventional biological wastewater treatment can be altered by switching the indirect energy input to a direct electricity injection, which is achieved by the electrode integration providing extra thermodynamic driving force to biodegradation. By using electrodes instead of oxygen as terminal electron acceptors, the electrical energy can be utilized more efficiently, and the key of direct use of electrical energy in biodegradation is the development of highly active electroactive biofilm and the increase of electron transfer between microbes and the electrode. Furthermore, the synergy of different microbial electrochemical units has additional benefit in energy and resource recovery, making wastewater treatment more sustainable.  相似文献   

15.
• ZnO-NP disrupted metabolic/catabolic balance of bacteria by affecting DHA activity. • ZnO-NPs toxicity was related to Zn2+ ion, interaction with cell and ROS generation. • Exposure to ZnO-NPs resulted in changed bacterial community structure at sludge. • The change in the EPS content was observed during exposure to ZnO-NPs. The unique properties and growing usage of zinc oxide nanoparticles increase their release in municipal wastewater treatment plants. Therefore, these nanoparticles, by interacting with microorganisms, can fail the suitable functioning of biological systems in treatment plants. For this reason, research into the toxicity of ZnO is urgent. In the present study, the toxicity mechanism of ZnO-NPs towards microbial communities central to granular activated sludge (GAS) performance was assessed over 120-day exposure. The results demonstrate that the biotoxicity of ZnO-NPs is dependent upon its dosage, exposure time, and the extent of reactive oxygen species (ROS) production. Furthermore, GAS performance and the extracellular polymeric substances (EPS) content were significantly reduced at 50 mg/L ZnO-NPs. This exposure led to decreases in the activity of ammonia monooxygenase (25.2%) and nitrate reductase (11.9%) activity. The Field emission scanning electron microscopy images confirmed that ZnO-NPs were able to disrupt the cell membrane integrity and lead to cell/bacterial death via intracellular ROS generation which was confirmed by the Confocal Laser Scanning Microscopy analysis. After exposure to the NPs, the bacterial community composition shifted to one dominated by Gram-positive bacteria. The results of this study could help to develop environmental standards and regulations for NPs applications and emissions.  相似文献   

16.
•Bacterial concentrations from eight stages were 104–105copies/m3. •Diameter influenced clustering of bacterial and HPB lineages. •Dg of 8 HPB ranged from 2.42 to 5.09 μm in composting areas. •Dg of 8 HPB ranged from 3.70 to 8.96 μm in packaging areas. •HPB had high concentrations and small sizes in composting areas. Composting plants are regarded as one of the important sources of environmental bioaerosols. However, limitations in the size distribution of airborne bacteria have prevented our comprehensive understanding of their risk to human health and their dispersal behavior. In this study, different sizes of airborne bacteria were collected using an eight-stage impactor from a full-scale composting facility. Size-related abundance and communities of airborne bacteria as well as human pathogenic bacteria (HPB) were investigated using 16S rRNA gene sequencing coupled with droplet digital PCR. Our results indicate that the bacterial concentrations from the eight stages were approximately 104–105copies/m3. Although no statistical correlation was detected between the particle size and the Shannon index, the influence of size on bacterial lineages was observed in both composting and packaging areas. For airborne bacteria from different stages, the dominant phyla were Firmicutes, Proteobacteria, and Actinobacteria, and the dominant genera was Bacillus. Seven out of eight HPB with a small geometric mean aerodynamic diameter had a high concentration in composting areas. Based on diameters of 2.42 to 5.09 μm, most HPB in the composting areas were expected to be deposited on the bronchus and secondary bronchus. However, in the packaging areas, the deposition of HPB (diameters 3.70 to 8.96 μm) occurred in the upper part of the respiratory tract. Our results on the size distribution, abundance, and diversity of these bacteria offer important information for the systematic evaluation of bacterial pathogenicity and the potential health impacts on workers in composting plants and the surrounding residents.  相似文献   

17.
• The airborne bacteria of Mexico City are representative of urban environments. • Particle material<10 µm influenced the type and quantity of airborne bacteria. • The diversity and richness of bacteria were higher in the rainy season. • The emission & transport of airborne bacteria determine the atmosphere’s microbiome. • Bacterias as Kocuria, Paracoccus, and Staphylococcus were in the air of Mexico City. Bacteria in the air present patterns in space and time produced by different sources and environmental factors. Few studies have focused on the link between airborne pathogenic bacteria in densely populated cities, and the risk to the population’s health. Bacteria associated with particulate matter (PM) were monitored from the air of Mexico City (Mexico). We employed a metagenomic approach to characterise bacteria using the 16S rRNA gene. Airborne bacteria sampling was carried out in the north, centre, and south of Mexico City, with different urbanisation rates, during 2017. Bacteria added to the particles were sampled using high-volume PM10 samplers. To ascertain significant differences in bacterial diversity between zones and seasons, the Kruskal-Wallis, Wilcoxon tests were done on alpha diversity parameters. Sixty-three air samples were collected, and DNA was sequenced using next-generation sequencing. The results indicated that the bacterial phyla in the north and south of the city were Firmicutes, Cyanobacteria, Proteobacteria, and Actinobacteria, while in the central zone there were more Actinobacteria. There were no differences in the alpha diversity indices between the sampled areas. According to the OTUs, the richness of bacteria was higher in the central zone. Alpha diversity was higher in the rainy season than in the dry season; the Shannon index and the OTUs observed were higher in the central zone in the dry season. Pathogenic bacteria such as Kocuria, Paracoccus, and Micrococcus predominated in both seasonal times, while Staphylococcus, Corynebacterium, and Nocardioides were found during the rainy season, with a presence in the central zone.  相似文献   

18.
• Anammox is promising for nitrogen removal from antibiotic-containing wastewater. • Most antibiotics could inhibit the anammox performance and activity. • Antibiotic pressure promoted the increase in antibiotic resistance genes (ARGs). • Antibiotic-resistance mechanisms of anammox bacteria are speculated. Antibiotic is widely present in the effluent from livestock husbandry and the pharmaceutical industry. Antibiotics in wastewater usually have high biological toxicity and even promote the occurrence and transmission of antibiotic resistant bacteria and antibiotic resistance genes. Moreover, most antibiotic-containing wastewater contains high concentration of ammonia nitrogen. Improper treatment will lead to high risk to the surrounding environment and even human health. The anaerobic ammonium oxidation (anammox) with great economic benefit and good treatment effect is a promising process to remove nitrogen from antibiotic-containing wastewater. However, antibiotic inhibition has been observed in anammox applications. Therefore, a comprehensive overview of the single and combined effects of various antibiotics on the anammox system is conducted in this review with a focus on nitrogen removal performance, sludge properties, microbial community, antibiotic resistance genes and anammox-involved functional genes. Additionally, the influencing mechanism of antibiotics on anammox consortia is summarized. Remaining problems and future research needs are also proposed based on the presented summary. This review provides a better understanding of the influences of antibiotics on anammox and offers a direction to remove nitrogen from antibiotic-containing wastewater by the anammox process.  相似文献   

19.
• Diversity and detection methods of pathogenic microorganisms in sludge. • Control performance of sludge treatment processes on pathogenic microorganisms. • Risk of pathogen exposure in sludge treatment and land application. The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human pathogens and their significant threats to public health security. The monitoring and control of human pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants (WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and disposal of sludge are important to minimize potential risks to the environment and public health. However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this consideration, this review summarizes the control performance of pathogenic microorganisms such as enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies, including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed. Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic microorganisms in sludge. This review advances the quantitative assessment of pathogenic microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment and disposal of sludge for pathogenic microorganism control.  相似文献   

20.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号