首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light response curve methodology for microphytobenthic biofilms was studied by comparing the two most usual approaches used in pulse amplitude modulated (PAM) fluorometry. The non-sequential light curve (N-SLC) method is characterized by independent measures of the photosynthetic activity across a light gradient whereas the rapid light curve (RLC) method consists of successive measures on the same sample exposed to a stepwise increase of light intensities. Experiments were carried out on experimental microphytobenthic biofilms prepared from natural assemblages and acclimated to dark conditions. In preliminary experiments, N-SLCs were constructed from fluorescence induction curves performed at 12 different photon flux densities (PFDs). A minimum of 50 s of illumination was necessary to reach a stable light response curve; shorter illumination times resulted in underestimating the physiological parameters (α the light utilization coefficient in light-limited conditions and rETRmax the maximum rate of photosynthesis efficiency) of the light response curve. For the comparison between N-SLCs and RLCs, the same time of illumination (50 s) was used for each light step of RLCs so that N-SLCs differed from RLCs only by the way the amount of light was delivered, i.e., a light dose accumulation for RLC. The experimental results showed the difference between the two photobiological response curves. In the lower range of PFDs, RLCs exhibited a larger value of α; in this light-limited part of the response curve the incremental increase of PFDs limited the development of NPQ and resulted in a better optimization of electron transport rate for RLC. In the higher range of PFDs, the trend was reversed and the RLC showed a lower value of rETRmax than the N-SLC did; this is attributed to the light dose accumulation which likely led to a more efficient dispersion of energy, as illustrated by a higher non-photochemical quenching (NPQ). In conclusion, these results confirm that parameters derived from both methods differ in their value and do not bear the same physiological information.  相似文献   

2.
Variations in tissue carbon (C), nitrogen (N) content, and non-structural carbohydrate (NSC) reserves in the turtle grass Thalassia testudinum Banks ex König were examined in relation to changes in sediment-N availability in Corpus Christi Bay (CCB) and lower Laguna Madre (LLM), Texas, USA, from May to October 1997. Under natural conditions, sediment pore-water NH+ 4-concentrations were higher at CCB (100?μM) than at LLM (30?μM); this difference was reflected in a significantly higher leaf and rhizome N-content at CCB than at LLM. However, sediment NH+ 4-enrichment using a commercial fertilizer resulted in significantly higher tissue N-content relative to controls at both sites. N enrichment also influenced plant carbon metabolism, as reflected by distinct increases in leaf C-content at both sites. Significant decreases in rhizome NSC-content was recorded during the first two months of the experiment, suggesting that C was reallocated from rhizomes to leaves to support stimulated leaf growth at both sites. At LLM, leaf growth-rates increased and leaf turnover-time decreased as a result of sediment NH+ 4-enrichment. With respect to chlorophyll, concentrations did not change significantly at CCB, but increased steadily at LLM after the first month following fertilization. In general however, chlorophyll concentrations in control plots were significantly higher at CCB than that at LLM. These observations suggest that leaf function related to C-fixation is enhanced under higher sediment N conditions, as reflected in higher leaf growth-rates and increased blade chlorophyll-content. In contrast, under low-N conditions, below-ground tissue production is enhanced at the expense of the above-ground shoots and leaves, resulting in the high below: above-ground biomass ratios often observed in seagrass beds of oligotrophic environments.  相似文献   

3.
N2 fixation (C2H2 reduction) associated with the leaves of the sea grass Thalassia testudinum was investigated at 5 sites in South Florida (Biscayne Bay) and one site in the Bahamas (Bimini Harbor). Significant activities were correlated with the occurrence of a heterocystous blue-green alga (Calothrix sp.) on the leaves. C2H2 reduction was not stimulated by organic compounds, either aerobically or anaerobically in the light or dark. Therefore, other physiological types of microbes were not important in N2 fixation. Diurnal and seasonal variations in N2 fixation occurred, with maximal rates during the daytime and in the late spring and early summer. N2 fixation was negligible at four stations in Biscayne Bay. At the fifth station, near Fowey Rock, about 5 kg N ha-1 year-1 was fixed. In the summer, the N2 fixed per day (4–5 mg N m-2) could provide 4 to 23% of the foliar productivity demands of T. testudinum at this site and the station in Bimini Harbor. N2 fixation at the periphery of a sea-grass patch, near Fowey Rock, could provide 8 to 38% of the daily nitrogen requirement for leaf production, and thereby might compensate for a less effective trapping and recycling of nitrogen from dead leaves in such regions.  相似文献   

4.
E. W. Koch 《Marine Biology》1994,118(4):767-776
Photosynthetic rates of aquatic plants frequently increase with increasing current velocities. This is presumably due to a reduction in the thickness of the diffusion boundary-layer which allows for a higher carbon availability on the plant surface. Blades of the seagrasses Thalassia testudinum and Cymodocea nodosa exposed to different current velocities under controlled laboratory conditions, showed increased photosynthetic rates with increasing flow only at low current velocities (expressed as blade friction velocities, u *). Carbon saturation of photosynthetic processes occurred at a relatively low u * level (0.25 cm s-1) for T. testudinum collected from a calm environment compared to C. nodosa (0.64 cm s-1) collected from a surf zone. No further enhancement of photosynthetic rates was observed at higher u * levels, suggesting limitations in carbon diffusion through the boundary layer below critical u * levels and possible limitations in carbon fixation by the enzymatic system at higher u * levels. These results, as well as those of previous theoretical studies, assumed the flow on the immediate seagrass-blade surface to be hydrodynamically smooth. The presence of epiphytes and attached debris causes the surface of in situ seagrass blades to be exposed to flows ranging from smooth to rough-turbulent. As a consequence, the boundary-layer thickness on moderately epiphytized blades under medium to high flow-conditions is not continuous, but fluctuates in time and space, enhancing carbon transport. In situ u * levels measured directly on blades of seagrasses indicate that T. testudinum and C. nodosa can be exposed to conditions under which the boundary layer limits photosynthesis during short periods of time (milliseconds) during low-energy events. As waves cause the thickness of the diffusion boundary-layer to fluctuate constantly, carbon-limiting conditions do not persist for prolonged periods.  相似文献   

5.
There has been an historical decline in the seagrass beds in Maho and Francis Bays, St. John, U.S. Virgin Islands: presently (1986) there are only five small seagrass beds in shallows water. These seagrass beds are highly disturbed by heavy boat usage and are intensively grazed by the green turtle Chelonia mydas L. Fifteen to 50 boats anchor each night in the bays: anchor scars cause a loss of up to 6.5 m2 d-1 or 1.8% yr-1 of the seagrass beds. Seagrasses regrew into such scars only minimally within a period of 7 mo. The size of the green turtle population was estimated at 50 subadults and their feeding behavior was determined by direct observation and radiotelemetry. The behavior of the green turtles differed from other observations published on the species. Here, the turtles grazed all available Thalassia testudinum, their preferred seagrass food, rather than creating discrete grazing scars, and spent all their waking hours (9 h per day) feeding. Areal productivity of T. testudinum leaves (33 to 97 mg dry wt m-2d-1) in the bays was at least an order of magnitude lower than published values or than the productivity of another, lessdisturbed seagrass bed on St. John, despite having comparable leaf-shoot density. Leaf shoots were stunted, fragile, achlorotic, and had only two leaves as opposed to the five leaves per shoot more typically seen. The green turtle population was near the estimated carrying capacity of T. testudinum, based on the standing crop and productivity of T. testudinum and the grazing rate of the turtles. The effect of disturbance of T. testudinum from boats and turtles was assessed by excluding these with emergent fences. Within 3 mo of protection, the areal and shoot-specific productivity of T. testudinum leaves as well as leaf size increased significantly compared to unprotected areas. Conservation efforts are recommended in Maho Bays and Francis because seagrass productivity is low, disturbance rates are higher than recovery rates, the turtles cannot increase further their feeding rate in order to compensate for such factors, and there are few alternate sources of T. testudinum on the north shore of St. John.Contribution No. 175 from West Indies Laboratory, Teague Bay, Christiansted, St. Croix, U.S. Virgin Islands 00820, USA  相似文献   

6.
Patriquin  D. G. 《Marine Biology》1972,15(1):35-46
Marine Biology - How are high rates of production by Thalassia testudinum König maintained in notably nutrient-poor tropical waters? Yield-nutrient supply correlations indicate that a...  相似文献   

7.
8.
9.
Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.  相似文献   

10.
M. J. Durako 《Marine Biology》1993,115(3):373-380
The effects of total dissolved inorganic carbon (DIC), free carbon dioxide [CO2(aq)], and bicarbonate (HCO 3 - ) concentrations on net photosynthetic oxygen evolution of the marine angiosperm Thalassia testudinum Banks ex König collected from Biscayne Bay (1988) and from Tampa Bay (1990), Florida, USA, were examined. Rates of photosynthesis declined by 85% from pH 7.25 to 8.75 in buffered seawater media with constant DIC concentration (2.20 mM), suggesting a strong influence of CO2(aq) concentration. A plateau in the pH-response curve between pH 7.75 and 8.50 indicated possible utilization of HCO 3 - . Responses of photosynthesis measured in buffered seawater media of varying DIC concentrations (0.75 to 13.17 mM) and pH (7.8 to 8.61) demonstrated that photosynthesis is rate-limited at ambient DIC levels. Photosynthesis increased in media with increasing HCO 3 - concentrations but near-constant CO2(aq) levels, confirming HCO 3 - assimilation. Calculated half-saturation constants (K s )for CO2(aq) and HCO 3 - indicated a high affinity for the former [K s (CO2)=3 to 18 M] and a much lower affinity for the latter [K s (HCO 3 - )=1.22 to 8.88 mM]. Calculated V max values for HCO 3 - were generally higher than those for CO2(aq), suggesting relatively efficient HCO 3 - utilization, despite the apparent low affinity for this carbon form.  相似文献   

11.
The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.  相似文献   

12.
酸雨胁迫对木荷叶片气体交换和叶绿素荧光参数的影响   总被引:2,自引:0,他引:2  
通过盆栽试验,研究了3种不同pH值(2.5、4.0、5.6)的模拟酸雨溶液对2年生木荷(Schima superba)幼苗叶片气体交换和荧光参数的影响。结果表明:在不同酸雨处理下,净光合速率和气孔导度日变化均呈"双峰"型,最大净光合速率和最高表观量子效率(AQE)变化趋势依次是pH4.0〉pH5.6〉pH2.5,说明pH4.0处理对木荷光合作用有促进作用;在不同酸雨处理下,PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)和相对叶绿素含量均呈现出pH4.0〉pH5.6〉pH2.5的变化趋势,pH4.0酸雨处理下表现出最高值,说明适度降低酸雨pH值(pH4.0)并不会对木荷的光合系统活性造成损伤,反而有促进作用,表明木荷对酸雨有较强的适应能力。  相似文献   

13.
Although the effectiveness of herbivores in mitigating the effects of nutrient enrichment is well documented, few studies have examined the effects of nutrient enrichment on components of consumer fitness. Enclosures were deployed in shallow turtle grass (Thalassia testudinum) beds in Florida Bay, Florida in fall 2003, spring 2004, and fall 2004 to measure the effects of nitrogen and phosphorous enrichment on the growth, fecundity, and stoichiometry of three invertebrate epiphyte grazers commonly associated with T. testudinum. The gastropod Turbo castanea exhibited significantly greater wet weight gain and lower C:P and N:P in enriched than in ambient treatments. Although nutrient enrichment did not have any significant effects on the growth of caridean shrimp (treatment consisted of several different caridean shrimp species), their C:N was significantly lower in enriched treatments. The final size and stoichiometry of the hermit crab Paguristes tortugae was not significantly affected by nutrient enrichment, nor did nutrient enrichment significantly affect the fecundity of P. tortugae, the only grazer in which gravid individuals or egg masses were present. Our study demonstrated that nutrient enrichment of primary producers can positively affect the growth of marine invertebrate grazers and alter their stoichiometry; however, these effects were species-specific and may be dependent upon the life stage, specific diets, and/or compensatory feeding habits of the grazers.  相似文献   

14.
The results of a year-long study in which epibenthic invertebrates were collected monthly from seagrass (Thalassia testudinum) meadows along the Caribbean coast of Panamá and the Panamá Canal Zone are described in this paper. Differences in species composition and abundance among sites were primarily due to the proximity of surrounding habitats, especially coral reefs, which contain a number of species that utilize the seagrass meadows. In contrast to many previous characterizations of tropical marine habitats, important seasonal fluctuations in both species number and abundance took place at each of the sites. Data on breeding activity among several species of decapod crustaceans indicate year-round reproduction, although considerable seasonal differences occur in the percentage of ovigerous females. These interspecific differences in observed reproductive output may be explained by differences in life-cycle length, a factor not often considered in discussions of seasonal breeding patterns in tropical marine invertebrates. Overall species composition was qualitatively similar to that reported in comparable studies of tropical and subtropical seagrass meadows elsewhere, although caridean shrimp and xanthid orab species were reduced in number and total abundance were much lower than in previous studies.  相似文献   

15.
Photosynthesis and transpiration rates of wheat leaves (Triticum aestivum L.) were measured at 30 min intervals under Mediterranean field conditions, using Photosynthesis Monitor system (PM-48M). The dynamics of net photosynthetic rate (P(N)), transpiration rate (E(T)), water use efficiency (WUE), light use efficiency (LUE), stomatal conductance (g(s)), photosynthetically active radiation (PAR), air temperature (T), relative humidity (RH), and atmospheric CO2 concentration (Catm) were quantified at five rainfed wheat sites with the same stages of development (midflowering) along south-to-north and east-to-west transects for eight days in April. Diurnal P(N) (3.6 to 6.6 micromol m(-2) s(-1)), PAR (392 to 564 micromol m2 sec(-1)), LUE (0.006 to 0.015) and WUE (0.0001 to 0.011) did not vary significantly across all five wheat sites (p > 0.05). P(N) and E(T) were strongly coupled and highly correlated with PAR (p < 0.001). Best multiple linear regression (MLR) models accounted for 92% of variations in P(N) as a function of PAR and E(T), and 90% in E(T) as a function of PAR and RH (p < 0.001). P(N) exhibited a peak at mid-morning, and a photosynthetic midday depression under the limiting effects of high evaporative demand. Diurnal variations in WUE and LUE showed a bimodal behavior with the maximum values in early morning and late afternoon. As the impacts of global climate change become increasingly felt, continuous measurements of climate-crop-soil-managementinteractions under natural conditions play a pivotal role not only in exploring changes in ecophysiological properties of strategic crops for food security such as wheat but also in devising preventive and mitigative management practices to ensure sustained agricultural productivity.  相似文献   

16.
17.
Diadromous fish often enter freshwater directly from seawater via fish ladders or channels built in estuarine dams. The oxygen consumption rates (OCR) of glass eel, Anguilla japonica, were determined using an automatic intermittent flow respirometer under various salinity and temperature regimes to physiologically explain this direct movement. The endogenous rhythm of the OCR in wild glass eels, freshly collected from estuaries, was nearly synchronous with the tidal pattern at the estuarine collection site. When the salinity was changed from 20 psu (12°C) at a constant temperature to that of freshwater, the OCR of the glass eels decreased by 21.6±7.0% (mean ± SD) (P<0.05), showing a dampened rhythm for about 48 h. After this period of impediment, the glass eels resumed normal metabolic activity. Direct migration from seawater to freshwater under constant temperature would result in a severe physiological stress for these glass eels for about two days. When the glass eels were exposed to a cyclic change in water temperature of 2°C 26 h−1, as they encounter in estuaries, and then were introduced to freshwater abruptly, the OCR rhythm corresponded to the cyclic changes in water temperature after exposure to freshwater. Under these conditions, the mean OCR of the glass eels had a small difference before and after exposure to freshwater. These data explained how glass eels can directly move from sea water into the freshwater without any apparent metabolic stress in the estuaries showing cyclic change in water temperature (Δt=2°C).  相似文献   

18.
The metal tolerance and metabolic changes in Boehmeria nivea colonized in mining areas are not well known. A hydroponic experiment was conducted to evaluate the impact of antimony (Sb)+arsenic (As) in following combinations (control (no metal), 20+0, 10+10, 40+0, 20+20, and 40+40 mg/L) on phytotoxicity, metal tolerance index (MTI), and chlorophyll fluorescence in B. nivea. This constitutes an initial investigation of metal tolerance and chlorophyll fluorescence in Sb and Sb+As contaminated B. nivea. The high Sb+As 40+40 mg/L produced significant phytotoxicity and MTI in the plant. Progressive higher Sb and Sb+As levels resulted in decreased chlorophyll fluorescence of B. nivea. Exposure to intermediate and high Sb+As levels induced damage in the photosynthesis apparatus of the plant.  相似文献   

19.
The influence of 49 combinations of salinity (10–40 S, at 5 S intervals) and temperature (0°–30°C, at 5C° intervals) on the maximum daily division rate (K) and 18 combinations of light intensity (six levels) and temperature (5°, 15°, and 25°C) on photosynthesis, cell division, and chlorophyll a was examined using two clones of Thalassiosira rotula Meunier isolated from the upwelling area of Baja California (clone C8) and from Narragansett Bay, Rhode Islands (clone A8). Physiological differences appear to characterize these to clones with regard to their temperature tolerance (C8 5°–30°C, A8 0°–25°C), maximum growth rate (C8 K=2.9, A8 K=2.4), chlorophyll a content, and in the rates of growth and photosynthesis in response to light intensity and temperature. Optimum salinity for both clones (25–30 S) was generally independent of temperature, while chlorophyll a content decreased with temperature. T. rotula is a cosmopolitan paractic species; experimental studies indicate that it is eurythermal and moderately euryhaline. Comparison of five additional Narragansett Bay isolates of T. rotula reveal minimal spacial or temporal variability in genetically determined physiological characteristics within this local population.  相似文献   

20.
Circadian rhythms in photosynthesis were defined in field populations of phytoplankton. Measurements of carbon-dioxide fixation rates demonstrated that a diurnal periodicity of photosynthesis in samples incubated under natural light-dark (LD) cycles also were observed to continue in similar samples which had been photoadapted to constant dim light (LL) for 48 h. These changes in photosynthetic rates preceded sunset and sunrise, had daily amplitudes that ranged from 1.5 to 2.0, appeared to be independent of light-intensity, and displayed maxima about midday, while rates of dark fixation of carbon dioxide and the photosynthetic pigment content per cell were constant over the circadian cycle. Similar rhythmicity also was detected in room-temperature (22°C) chlorophyll a fluorescence yield, in both the obsence and presence of the photosynthesis inhibitor DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea]. However, the magnitude and timing of the fluorescence rhythm maxima seem to depend on wavelengths monitored and, in part, on the measuring technique used. Also, the circadian changes in the fluorescence intensity were abolished at low temperature (-60°C), and the shape of the emission spectra of chlorophyll fluorescence of cells in LD and LL did not change over time. The significance of the fluorescence rhythms with regard to chlorophyll a determinations and photosynthetic rates is discussed. It was concluded that there was sufficient similarity between circadian rhythms of photosynthesis in natural phytoplankton populations and in laboratory cultures of dinoflagellates to suggest that the mechanism of regulation may be the same for both of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号