首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current knowledge on the abundance and distribution patterns of different soft coral species is relatively limited when compared to other benthic suspension feeders such as gorgonians and hard coral species. To overcome this scarcity of information, the distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum were investigated in northwestern Mediterranean benthic communities over a wide geographical (60 km of coastline) and bathymetrical (0–70 m depth) extent using a remotely operated vehicle. A. acaule was the most abundant species in the study area with highest recorded density of 18 col m?2 found at depths of 35–45 m in areas that are directly exposed to strong near-bottom currents. Conversely, A. palmatum was only found as scattered solitary colonies at greater depths in soft bottoms, with maximum density of 2.4 col m?2. Medium and large colonies of A. acaule were preferentially found on sloping and vertical rocky bottoms where they form dense patches. High-density patches of A. acaule were preferentially found on vertical rocky bottom, while isolated colonies were preferentially observed on coralligenous substrata as well as on flat soft and maërl substrates. A. acaule biomass distribution showed highest values between 40 and 45 m depth, and between 60 and 65 m depth. This suggests that deeper populations are formed by colonies that are bigger than the equivalent shallower ones. Although both species are almost genetically identical, ecologically they are very different. For this reason, conservation plans should consider the differential ecological traits shown by these two soft coral species.  相似文献   

2.
The deep-sea pennatulacean coral Anthoptilum grandiflorum exhibits a cosmopolitan distribution and was recently determined to serve as habitat for other invertebrates and fish larvae in the northwest Atlantic. Colonies collected at bathyal depths between 2006 and 2010 in eastern Canada were analysed to determine their fecundity and characterize spatial and temporal trends in their reproductive cycle. Anthoptilum grandiflorum is a gonochoric broadcast spawner with a sex ratio that does not differ significantly from equality (although one hermaphrodite colony was observed). In male colonies, all the spermatocysts synthesized become mature over the annual cycle, while only ~21 % of the initial production of oocytes reaches maturity in female colonies. Female potential fecundity based on mature oocytes just before spawning was on average 13 oocytes polyp?1; male potential fecundity was 48 spermatocysts polyp?1. The spawning period of A. grandiflorum differs between geographic regions, from April (in southern Newfoundland) to July (in Labrador), closely following regional spring phytoplankton blooms after accounting for the deposition of planktic detritus. Release of oocytes by a live colony held in the laboratory was recorded in April 2011, coincident with field data for similar latitudes. Seawater temperatures at the time of spawning were around 3.6–4.8 °C in all regions and in the laboratory. Early stages of gametogenesis were detected in colonies collected shortly after the spawning season, and early and late growth stages occurred successively until December. Mature colonies were observed between April and July (depending on latitude). The diameter of mature oocytes (~1,100 μm maximum diameter) is consistent with lecithotrophic larval development.  相似文献   

3.
The success that the putative alien species Oculina patagonica is able to survive under different environmental conditions may be benefiting its establishment and spreading along the Mediterranean Basin. Our objectives were to determine the response of this species, in terms of growth and bleaching, under different environmental conditions. Field data on colony growth and bleaching were obtained for a period of 18 months (from June 2010 to December 2011), in the Alicante Harbour (38°20′11″N, 00°29′11″W) and the Marine Protected Area of Tabarca (38°09′59″N, 00°28′56″W). Additionally, data on sedimentation rates, chlorophyll a concentration and organic matter were also collected. Moreover, the role of light over growth and bleaching of the coral was also studied with a field experiment. Our results showed that growth rates were similar among localities (eutrophic and oligotrophic environments), decreasing with increasing perimeter of the colony. Growth rates were at a minimum during cold months (13 °C) and enhanced during warm months until a threshold temperature; thereafter, bleaching was observed (>28 °C), being adverse for coral growth. In addition, light attenuation could act such as local stress, increasing the coral bleaching with the increase in seawater temperature. Our findings confirmed that O. patagonica has a broad tolerance to seawater temperature, irradiance and trophic water conditions, in addition to its ability to thrive through bleaching events, mainly in eutrophic environments, probably related to food availability.  相似文献   

4.
Fungiacyathus marenzelleri (Vaughan, 1906) is a deep-water solitary coral, cosmopolitan in distribution that is found at depths of 300–6,328 m. This study examined gametogenesis, inter-annual variability and reproductive periodicity of F. marenzelleri collected from Station M (34°50′N, 123°00′W) in the northeast Pacific at a depth of 4,100 m. Samples were collected (May, June, October 1996; August 1998; February, June 2001; and June 2002) and histologically processed with spermatogenic stage, oocyte size and fecundity measured. Four stages of spermatogenesis were identified and all males contained multiple stages of sperm development in each seasonal sample. Three stages of oocyte development were identified; previtellogenic (<28–150 μm), vitellogenic (150–300 μm) and late vitellogenic (300–400 μm). Comparison of mean oocyte diameters among sampling dates showed there were no inter-annual variations or seasonal differences. Overall, fecundity was 1,290 (±407) oocytes polyp−1, and with no significant differences between sample months. Fecundity was not polyp-size dependent. This study shows a similar quasi-continuous mode of reproduction to this species examined from the Northeast Atlantic Ocean, but the fecundity is reduced by 50%. The reproductive output may fluctuate in relation to the input of organic material at this site, as shown by non-significant trends in the oocyte size-frequency and fecundity data. A quasi-continuous output of gametes would promote successful fertilisation and wide dispersal of the lecithotrophic larvae.  相似文献   

5.
Between 2002 and 2008, samples of the cold-water scleractinian coral Lophelia pertusa were collected from the Trondheim Fjord in Norway to examine reproductive periodicity. Collections were made from three locations: Tautra, (63°35.36′N, 10°31.23′E at 40–70 m), Stokkbergneset (63°28.18′N, 09°54.73′E at 110–500 m), and Røberg (63°28.88′N, 09°59.50′E at 250 m). Populations of L. pertusa from the Trondheim Fjord initiated oogenesis in January and spawning occurred from late January to early March the following year. Gametogenic cycles of the female L. pertusa samples overlapped by approximately 2 months, with oogonia visible in January, but this was not evident in the males. This paper provides the most complete gametogenic cycle to date and spawning observations for this important structure-forming species. The results from fjord populations are compared with published and preliminary data from other regions and are discussed in the context of regional differences in physical and biological variables, particularly food supply. Differences in gametogenic cycles within a single species provide a rare opportunity (especially in deep-sea species) to examine potential drivers of reproduction.  相似文献   

6.
The photophysiology of three geniculate coralline algal species (Corallina officinalis, C. caespitosa and Ellisolandia elongata) was determined in intertidal rock pools in the south-west UK at Combe Martin (51°12′31N 4°2′19W) and Heybrook Bay (50°31′66N 4°11′41W), at the start, middle and end of summer (September 1 and 2) and winter (February 9 and 10) daylight tidal emersion periods, in relation to prevailing irradiance, temperature and carbonate chemistry conditions. Algal photophysiology was assessed from rapid light curves performed using pulse amplitude modulation fluorometry. Corallina and Ellisolandia experienced significant fluctuations in irradiance, temperature and carbonate chemistry over seasonal and tidal cycles. Rock pool carbonate chemistry was predictable (R 2 = 0.82, P < 0.0001) by photodose (summed irradiance) plus water temperature, but not significantly related to photophysiology. In contrast, Corallina and Ellisolandia relative maximum electron transfer rate showed a significant negative relationship (R 2 = 0.65, P < 0.0001) with irradiance plus water temperature. At a seasonal resolution, photoacclimation to maximize both light harvesting during winter months and photoprotection during summer months was observed for all species. Dynamic photoinhibition was apparent over both summer and winter tidal emersion, in relation to irradiance fluctuations. More effective photoinhibition was apparent during summer months, with greater sensitivity to irradiance and slower recovery in F v/F m, observed during winter. With sustained high irradiance over tidal emersion, the establishment of high pH/low inorganic carbon conditions may impact photochemistry. This study represents the first assessment of C. officinalis, C. caespitosa and E. elongata photophysiology underpinned by clear species concepts and highlights their ability to adapt to the dramatically fluctuating conditions experienced in intertidal rock pools.  相似文献   

7.
Results from controlled in situ experimentation conducted on the leeward reef tract of Curaçao, Netherlands Antilles, indicate that the coral Montastraea annularis exhibits a complex, yet consistent, cellular response to increasing sea surface temperature (SST) and decreasing irradiance. This was determined by simultaneously quantifying and tracking the tissue density of zooxanthellae and mucocytes using a novel technique that integrates the lectin histochemical stain wheat germ agglutinin (WGA) with high-resolution (200 nm) optical epifluorescence microscopy. Coral colonies growing at 6-m water depth (WD) and an irradiance of 100.2 ± 6.5 μmol m?2 s?1 were treated with a shading experiment for 11 days that reduced irradiance to 34.9 ± 6.6, 72.0 ± 7.0 and 90.1 ± 4.2 μmol m?2 s?1, respectively. While a significant decrease in the density of both zooxanthellae and mucocytes were observed at all shade levels, the largest reduction occurred between the natural non-shaded control (44,298 ± 3,242 zooxanthellae cm?2; 4,853 ± 346 mucocytes cm?2) and the highest shading level (13,982 ± 1,961 zooxanthallae cm?2; 2,544 ± 372.9 mucocytes cm?2). Colonies were also sampled during a seasonal increase in SST of 1.5°C, where the density of zooxanthellae was significantly lower (from 54,710 ± 1,755 to 34,322 ± 2,894 cells cm?2) and the density of mucocytes was significantly higher (from 6,100 ± 304 to 29,658 ± 3,937 cells cm?2). These observations of coral cellular response to environmental change provide evidence to support new hypotheses for coral survival and the complex role played by mucus in feeding, microbial associations and resilience to increasing SST.  相似文献   

8.
What to do about fisheries collapse and the decline of large fishes in marine ecosystems is a critical debate on a global scale. To address one aspect of this debate, a major fisheries management action, the removal of gill nets in 1994 from the nearshore arena in the Southern California Bight (34°26′30″N, 120°27′09″W to 33°32′03″N, 117°07′28″W) was analyzed. First, the impetus for the gill net ban was the crash of the commercial fishery for white seabass (Atractoscion nobilis; Sciaenidae) in the early 1980s. From 1982 to 1997 catch remained at a historically low level (47.8 ± 3.0 mt) when compared to landings from 1936–1981, but increased significantly from 1995–2004 (r = 0.89, P < 0.01) to within the 95% confidence limit of the historic California landings. After the white seabass fishery crashed in the early 1980s, landings of soupfin (Galeorhinus galeus; Triakidae) and leopard shark (Triakis semifasciata; Triakidae) also significantly declined (r = 0.95, P < 0.01 and r = 0.91, P < 0.01, respectively) until the gill net closure. After the closure both soupfin and leopard shark significantly increased in CPUE (r = 0.72, P = 0.02 and r = 0.87, P < 0.01, respectively). Finally, giant sea bass (Stereolepis gigas; Polyprionidae) the apex predatory fish in this ecosystem, which was protected from commercial and recreational fishing in 1981, were not observed in a quarterly scientific SCUBA monitoring program from 1974 to 2001 but reappeared in 2002–2004. In addition, CPUE of giant seabass increased significantly from 1995 to 2004 (r = 0.82, P < 0.01) in the gill net monitoring program. The trends in abundance of these fishes return were not correlated with sea surface temperature (SST), the Pacific Decadal Oscillation (PDO) or the El Niño/Southern Oscillation (ENSO). All four species increased significantly in either commercial catch, CPUE, or in the SCUBA monitoring program after the 1994 gill net closure, whereas they had declined significantly, crashed, or were absent prior to this action. This suggests that removing gill nets from coastal ecosystems has a positive impact on large marine fishes.  相似文献   

9.
It has been hypothesized that endolithic photo-autotrophs inside the skeleton of cold-water corals may have a mutualistic relationship with the coral host positively affecting coral calcification. This study investigated the effect of endolithic photo-autotrophs on the apical septal extension of the cold-water coral Desmophyllum dianthus at Fjord Comau, southern Chile (42.41°–42.15°S, 72.5°W). The fluorescent staining agent calcein was used to document the linear apical extension of septae for a period of one and a half years between 2006 and 2007. The results showed a severe reduction in extension rates associated with the presence of endolithic photo-autotrophs. Infested individuals grew about half as fast as non-infested polyps with a median value of 1.18 μm day?1 compared to 2.76 μm day?1. Contrary to the initial hypothesis, these results point toward a parasitic relationship between D. dianthus and its endolithic photo-autotrophs potentially impairing coral fitness. However, further data on physiological parameters and other aspects of the calcification process are necessary to confirm these findings.  相似文献   

10.
Five hundred and ninety-nine primary producers and consumers in the Papahānaumokuākea Marine National Monument (PMNM) (22°N–30°N, 160°W–180°W) were sampled for carbon and nitrogen stable isotope composition to elucidate trophic relationships in a relatively unimpacted, apex predator–dominated coral reef ecosystem. A one-isotope (δ13C), two-source (phytoplankton and benthic primary production) mixing model provided evidence for an average minimum benthic primary production contribution of 65 % to consumer production. Primary producer δ15N values ranged from ?1.6 to 8.0 ‰ with an average (2.1 ‰) consistent with a prevalence of N2 fixation. Consumer group δ15N means ranged from 6.6 ‰ (herbivore) to 12.1 ‰ (Galeocerdo cuvier), and differences between consumer group δ15N values suggest an average trophic enrichment factor of 1.8 ‰ Δ15N. Based on relative δ15N values, the larger G. cuvier may feed at a trophic position above other apex predators. The results provide baseline data for investigating the trophic ecology of healthy coral reef ecosystems.  相似文献   

11.
The aim of this study was to examine the reproductive and gametogenic cycle of the spionid polychaete Scolelepis goodbodyi (Jones). Every 15 days, in the upper level of the intertidal zone on Barequeçaba Beach in southeastern Brazil, a 100 m2 area was delimited and within it three points were selected and sampled using a core sampler 0.01 m2 in area × 0.2 m long. Each sample was divided into three sub-samples: surface (2 cm) and middle (8 cm), which were sieved through 0.5, 0.25 and 0.125 mm mesh sieves; and lower (10 cm), sieved through 1.0 and 0.5 mm mesh sieves. Males, females and undetermined individuals were separated, and the width of the third setiger was measured. The gonadal development of each individual was classified based on external features of the gametogenic setigers. Ten to 20 adults from each sampling period were classified according to their gonadal development stage and then analyzed histologically for gametogenic studies, for comparison with the former classification. Some of the ripe females were used for fecundity evaluation. The diameters of the oocytes were measured prior to spawning. Eight hundred and twenty-eight females (29.70%), 848 males (30.42%) and 1,112 undetermined individuals (39.89%) were analyzed. The sex ratio did not differ significantly from unity (χ2 = 0.24; df = 1; P < 0.05). Males and females were more abundant in May 2002 (ca. 80%) and between November 2002 and May 2003 (between 77 and 90%); the proportion of undetermined individuals did not represent recruitment alone, but also a high incidence of adults with recovering gonads. Fecundity varied from 134 oocytes in a 0.54 mm W3 individual to 289 oocytes in a 0.4 mm W3 individual, with a mean of 220 (SD = 57) oocytes per female and 19 (SD = 5) oocytes per gametogenic setiger. Oocytes were ellipsoid, and ranged in size from 150 × 80 (to 220 × 120 μm (mean ± SD = 173 × 113 ± 15 × 11 μm). Neither a well-defined gametogenic cycle nor synchrony in the reproductive period was observed, because many gonadal development stages occurred in each month. Nevertheless, peaks of maturity were observed between October–December 2002 and April–May 2003.  相似文献   

12.
This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.  相似文献   

13.
We address the global deficit of data describing kelp forest distribution, relative covers and biomass by testing the ability of species distribution models to predict these attributes at locations where data are currently limited. We integrated biological ground truth data with high-resolution environmental datasets to develop generalized additive models that accurately predict the structure of Laminaria forests within the Bay of Morlaix (48°42′42″N, 3°55′40″W). Forest distribution and proportional covers were predicted using water depth, light availability, wave exposure and sediment dynamics. The biomass of individual kelp species was modeled by supplementing these same variables with measures of seafloor slope and benthic position. Biomass predictions for Laminaria digitata and Laminaria hyperborea contrast the physiological tolerances of these species to light and wave exposure gradients. As a direct management output, we produced high-resolution maps (25 m2 grids) that closely match independent field data and provide vital information for marine spatial planning.  相似文献   

14.
Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 μmol photons m?2 s?1. Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.  相似文献   

15.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

16.
To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179′N, 120°44.85′E), were exposed to ambient (419–470 μatm) and high (604–742 μatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality. The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.  相似文献   

17.
The sea urchin cardinalfish, Siphamia tubifer (Perciformes: Apogonidae), is unusual among coral reef fishes for its use of bioluminescence, produced by symbiotic bacteria, while foraging at night. As a foundation for understanding the relationship between the symbiosis and the ecology of the fish, this study examined the diel behavior, host urchin preference, site fidelity, and homing of S. tubifer in June and July of 2012 and 2013 at reefs near Sesoko Island, Okinawa, Japan (26°38′N, 127°52′E). After foraging, S. tubifer aggregated in groups among the spines of the longspine sea urchin, Diadema setosum, and the banded sea urchin, Echinothrix calamaris. A preference for D. setosum was evident (P < 0.001), especially by larger individuals (>25 mm standard length, P < 0.01), and choice experiments demonstrated the ability of S. tubifer to recognize and orient to a host urchin and to conspecifics. Tagging studies revealed that S. tubifer exhibits daily fidelity to a host urchin; 43–50 and 26–37 % of tagged individuals were associated with the same urchin after 3 and 7 days. Tagged fish also returned to their site of origin after displacement; by day two, 23–43 and 27–33 % of tagged individuals returned from displacement distances of 1 and 2 km. These results suggest that S. tubifer uses various environmental cues for homing and site fidelity; similar behaviors and cues might be used by larvae for recruitment to settlement sites and for the acquisition of luminous symbiotic bacteria.  相似文献   

18.
Seventeen immature green turtles Chelonia mydas were tracked concurrently by automated ultrasonic receivers at a coral reef off North-Eastern Australia (September–December 2010, 16.4°S, 145.6°E). The majority (n = 11) were tracked for the entire 100-day study, the remainder for 23–85 days. Detection data aggregated at 30-min intervals produced median 6.5–35 daily locations for individual turtles. Home range areas (95 % utilisation distribution) were ≤1 km2, $ {\bar{\text{x}}} $  ± SD = 0.74 km2 ± 0.159. To the best of our knowledge, these are the first home range estimates for C. mydas foraging at offshore tropical reefs. The findings are important for conservation in revealing near-continuous presence of the same individuals within a small geographic area. Time between detections was very short (median <3 min) demonstrating passive ultrasonic technology can track multiple turtles in a foraging environment with higher temporal resolution than typically achieved by satellite tracking.  相似文献   

19.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

20.
In this study, we examined the variability and potential patterns of fecundity in the precious Mediterranean red coral Corallium rubrum (L. 1758). A total of 12 populations were selected from the NW Mediterranean Sea. We used a hierarchical sampling design to explore fecundity patterns associated with different environmental conditions found in different cave zones (entrance vs. interior), depths (15–22 vs. 39–42 m), and geographic locations (Côte Bleue vs. Calanques). Overall, 240 apical tips from colonies (10 male + 10 female colonies per population) were analyzed. Fecundity ranged between 1.0 ± 0.7 and 3.2 ± 2.3 mature gonads per polyp in female colonies and between 2.5 ± 1.6 and 6.9 ± 2.5 mature gonads per polyp in male colonies. The fecundity of red coral varied significantly for populations dwelling in different cave zones and geographic areas but not for the examined depths. Our results contribute to the knowledge of red coral fecundity in populations not yet studied in the NW Mediterranean and elucidate significant variability in fecundity within different environmental conditions. The information on coral fecundity can contribute to the development of management and conservation plans for red coral populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号