首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leifeld J  Fuhrer J 《Ambio》2010,39(8):585-599
Organic farming is believed to improve soil fertility by enhancing soil organic matter (SOM) contents. An important co-benefit would be the sequestration of carbon from atmospheric CO2. Such a positive effect has been suggested based on data from field experiments though many studies were not designed to address the issue of carbon sequestration. The aim of our study was to examine published data in order to identify possible flaws such as missing a proper baseline, carbon mass measurements, or lack of a clear distinction between conventional and organic farming practices, thereby attributing effects of specific practices to organic farming, which are not uniquely organic. A total of 68 data sets were analyzed from 32 peer-reviewed publications aiming to compare conventional with organic farming. The analysis revealed that after conversion, soil C content (SOC) in organic systems increased annually by 2.2% on average, whereas in conventional systems SOC did not change significantly. The majority of publications reported SOC concentrations rather than amounts thus neglecting possible changes in soil bulk density. 34 out of 68 data sets missed a true control with well-defined starting conditions. In 37 out of 50 cases, the amount of organic fertilizer in the organic system exceeded that applied in the compared conventional system, and in half of the cases crop rotations differed between systems. In the few studies where crop rotation and organic fertilization were comparable in both systems no consistent difference in SOC was found. From this data analysis, we conclude that the claim for beneficial effects of organic farming on SOC is premature and that reported advantages of organic farming for SOC are largely determined by higher and often disproportionate application of organic fertilizer compared to conventional farming.  相似文献   

2.
Conservation efforts tend to focus on the direct impacts humans have on their surrounding environment; however there are also many ways in which people indirectly affect ecosystems. Recent research on ecological subsidies—the transfer of energy and nutrients from one ecosystem to another—has highlighted the importance of nutrient exchange for maintaining productivity and diversity at a landscape scale, while also pointing toward the fragility of ecotones and vulnerability of subsidies to human activities. We review the recent literature on landscape connectivity and ecosystem subsidies from aquatic systems to terrestrial systems. Based on this review, we propose a conceptual model of how human activities may alter or eliminate the flow of energy and nutrients between ecosystems by influencing the delivery of subsidies along the pathway of transfer. To demonstrate the utility of this conceptual model, we discuss it in the context of case studies of subsidies derived from salmon, marine mammals, sea turtles, sea birds, and shoreline debris. Subsidy restoration may require a different set of actions from simply reversing the pathway of degradation. We suggest that effective restoration and conservation efforts will require a multifaceted approach, targeting many steps along the subsidy transfer pathway, to address these issues.  相似文献   

3.
The Finnish agri-environmental program (AEP) has been in operation for 20 years with >90 % farmer commitment. This study aimed to establish whether reduced nitrogen (N) and phosphorus (P) use has impacted spring cereal yields and quality based on comprehensive follow-up studies and long-term experiments. We found that the gap between genetic yield potential and attained yield has increased after the AEP was imposed. However, many contemporary changes in agricultural practices, driven by changes in prices and farm subsidies, also including the AEP, were likely reasons, together with reduced N, but not phosphorus use. Such overall changes in crop management coincided with stagnation or decline in yields and adverse changes in quality, but yield-removed N increased and residual N decreased. Further studies are needed to assess whether all the changes are environmentally, economically, and socially sustainable, and acceptable, in the long run. The concept of sustainable intensification is worth considering as a means to develop northern European agricultural systems to combine environmental benefits with productivity.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0637-9) contains supplementary material, which is available to authorized users.  相似文献   

4.
Bergström L  Goulding KW 《Ambio》2005,34(4-5):283-287
Producing an adequate quantity of healthy food without polluting the environment is a serious challenge for future agriculture around the world. The Food 21 research program in Sweden has researched all aspects--economic, environmental, and social--of sustainable farming systems. This paper presents some of the research from that and other relevant international research programs that have focused on better nutrient-use efficiency, especially for nitrogen and phosphorus. It shows that a range of sustainable solutions to nutrient-use efficiency exists, some of which are complex but some very simple. Government policies, including subsidies; research and technology; and public acceptance of farming practices all combine to create these solutions. Participatory approaches to knowledge transfer are needed, in which scientists, policy makers, farmers, advisers, and consumers exchange information and together build sustainable farming systems.  相似文献   

5.
Food 21, an interdisciplinary research program encompassing the whole agro-food chain, was conducted in Sweden during 1997-2004. The challenges undertaken were to come up with environmental tools and solutions to existing nonsustainable practices along the entire food chain. This required close collaboration between the scientists and the food chain stakeholders. A set of goals characterizing sustainable food production is presented in this paper. Synthesis and systems analysis were the main tools used to analyze the sustainability of proposed changes. In this introduction we give an overview of the Food 21 concept and highlight some results. For example, we found that organic farming and organic products were not in general superior to conventional products and practices with respect to environmental impact and product quality. We also summarize the management experiences in this article, since we consider them to be rather unique and since they contributed to the overall success of the program.  相似文献   

6.
Environmental Science and Pollution Research - This research developed an agent-based model (ABM) for simulating pollutant loads from pig farming. The behavior of farmer agents was captured using...  相似文献   

7.
Organic and conventional crops were studied by identifying the relationship between persistent organic pollutants in cereals, vegetables and soil. The residues of organochlorine pesticides and polychlorinated biphenyls (PCBs) were determined in grains (rye and wheat), vegetables (carrots and beets) and soil collected from the fields. PCB residues recorded in the beets from organic farming were as high as 3.71 ppb dry weight (dry wt.), while in the soil from conventional farming of beets 0.53 ppb dry wt. Among vegetables, higher concentrations of pesticides were detected in organically grown beets (190.63 ppb dry wt.). Soil samples from the organic farming contained lower levels of organochlorine pesticide residues compared to the conventional farming. Taking into account toxicity equivalent (TEQ), the conventionally grown carrots accumulated the most toxic PCBs. Non-ortho and mono-ortho PCBs were also noted in the grain of conventionally grown rye and amounted to 3.05 pg-TEQ/g wet wt.  相似文献   

8.
Air pollution in England and Wales is reviewed to identify priorities for management and research. The main human drivers of emissions are the production and consumption of energy and materials, disposal of waste, transport and land use. Pollutants are assigned to seven types: (i) nuisance (e.g. odour, noise), (ii) toxic, (iii) acidifying/eutrophying, (iv) photochemical oxidant precursors, (v) radionuclides, (vi) stratospheric ozone depleting substances and (vii) greenhouse gases. Dominant trends in activity and emissions are highlighted. New technologies and fuels are partially decoupling emissions from activity in power generation, industry and transport, but the gains are being offset by growth in demand and output in all major sectors. The evidence for impacts on human health, the atmosphere and other environmental systems is discussed. Priorities for management are climate change, ground-level ozone, acidification and eutrophication by nitrogen, urban air quality and nuisance pollution. Management responses require greater foresight, technological improvements and new instruments to control polluting activities. More scientific information is needed on the impacts on human health, quality of life and ecosystems, and on the links between different types of pollution. The policy challenges include generating energy sustainably, reducing transport impacts, devising effective economic instruments, improving societal awareness and contributing to cleaner global development.  相似文献   

9.
Dilly O  Blume HP  Sehy U  Jimenez M  Munch JC 《Chemosphere》2003,52(3):557-569
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients.  相似文献   

10.
Rising global population would force farmers to amplify food production substantially in upcoming 3–4 decades. The easiest way to increase grain production is through expanding cropping area by clearing uncultivated land. This is attained by permitting deadly loss of carbon (C) stocks, jeopardizing ecosystem biodiversity and deteriorating environmental quality. We aim to propose key agronomical tactics, livestock management strategy and advance approaches for aquaculture to increase productivity and simultaneously reduce the environmental impacts of farming sector. For this, we considered three major sectors of farming, i.e. agriculture, fishery and dairy. We collected literatures stating approaches or technologies that could reduce GHG emission from these sectors. Thereafter, we synthesized strategies or options that are more feasible and accessible for inclusion in farm sector to reduce GHG emission. Having comprehensively reviewed several publications, we propose potential strategies to reduce GHG emission. Agronomic practices like crop diversification, reducing summer fallow, soil organic carbon sequestration, tillage and crop residue management and inclusion of N2-fixing pulses in crop rotations are some of those. Livestock management through changing animals’ diets, optimal use of the gas produced from manures, frequent and complete manure removal from animal housing and aquaculture management strategies to improve fish health and improve feed conversion efficiency could reduce their GHG emission footprint too. Adapting of effective and economic practices GHG emission footprint reduction potential of farming sector could make farming sector a C neutral enterprise. To overcome the ecological, technological and institutional barriers, policy on trade, tax, grazing practice and GHG pricing should be implemented properly.  相似文献   

11.
Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship.  相似文献   

12.

The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.

  相似文献   

13.
Environmental and economic evaluation of bioenergy in Ontario, Canada   总被引:1,自引:0,他引:1  
We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.  相似文献   

14.
基因工程的研究发展非常迅速,使其在农业和食品加工领域的应用成为不可避免,但其安全性问题在世界范围内引起了非常广泛的争议。从基因工程内涵和有机农业的要求及目标出发,讨论了基因工程的潜在影响及其对发展有机食品产业的冲击。认为有机农业运动面临的紧迫问题是尽快协调所有的行动方案来保证有机食品永远不涉及基因工程生物体。有机农业正面临基因工程的挑战,其发展的潜力是建立一个完全独立的有机食品市场。  相似文献   

15.
Determinants of consumer behavior related to organic foods   总被引:1,自引:0,他引:1  
Shepherd R  Magnusson M  Sjödén PO 《Ambio》2005,34(4-5):352-359
There have been many studies of what influences consumers in their decisions to purchase or consume organic foods, mainly concerned with fresh organic foods. These show a discrepancy between attitudes and behavior with people being positive about organic foods but often not purchasing them. This discrepancy seems to be explained by the fact that consumers do not consider "organically produced" to be an important purchase criterion, that organic foods are not perceived to surpass conventional foods regarding taste and shelf life (two qualities rated to be of great importance), and because of the perceived premium prices of organic foods. In two Swedish studies, health benefits were demonstrated to be more strongly related to attitudes and behavior toward organic foods than were perceived environmental benefits. A new European Union (EU) project will investigate the influences on both fresh and processed organic foods and investigate the role of moral, ethical, and affective influences on choice across eight EU countries.  相似文献   

16.
A holistic assessment procedure has been used in this study for comparing conventional activated sludge (CAS) and membrane bioreactor (MBR) processes for the treatment of municipal wastewater. Technical, social, administrative, economic and environmental impacts have been evaluated based on 1 year of operational data from three full-scale lines (one MBR and two CAS) working in parallel in a large municipal treatment plant. The comparative assessment evidences a slight advantage of the conventional process in the studied case, essentially due to lower costs, complexity and energy consumption. On the other hand, the MBR technology has a better social acceptance and similar overall environmental footprint. Although these results are influenced by site-specific parameters and cannot be generalized, the assessment procedure allowed identifying the most important factors affecting the final scores for each technology and the main differences between the compared technologies. Local conditions can affect the relative importance of the assessed impacts, and the use of weighting factors is proposed for better tailoring the comparative assessment to the local needs and circumstances. A sensitivity analysis on the weighted final scores demonstrated how local factors are very important and must be carefully evaluated in the decision making process.  相似文献   

17.
Nicholl SI  Talley JW 《Chemosphere》2006,63(1):132-141
The physical availability of hydrophobic organic contaminants (HOCs) bound to soils and sediments often controls their environmental toxicity. Currently, complicated and time extensive procedures are necessary to determine physical availability. The development of thermal programmed desorption mass spectrometry (TPD-MS) techniques for environmental samples may make it possible to evaluate the physical availability of HOCs in soils and sediments and also calculate relevant release energy values for bound contaminants. This work focused on developing the analytical protocols and data processing requirements for studying the desorption of HOCs from various simple geosorbents using TPD-MS. The work seeks to document the use of the TPD-MS method as an environmental assessment tool and provide the reader with a working knowledge of the entire process.  相似文献   

18.
Agricultural soil is a contributor of nitrate to natural waters. High nitrate levels in water leached from soils are related to high nitrate concentrations in drinking water, and excess levels change the ecological balance of rivers and lakes. In this paper, sound solutions to the major environmental issue of limiting nitrate leaching by modifying agricultural practices are discussed. The causes of nitrate leaching from agricultural land are briefly explained and existing measures for the reduction of nitrate losses are described, analyzed and evaluated. Reduction of nutrient leaching is not a question of organic or conventional farming, but rather of the introduction and use of appropriate countermeasures. We propose the following guiding principles to minimize leaching from agricultural soils. To some extent these principles require a new way of thinking: i) environmental indexing of fields and consideration of spatial variability within fields in relation to their contribution to leaching losses within a catchment; ii) reduction of nitrogen inputs to soil to levels slightly below those expected to give the optimum yield by applying less nitrogen fertilizer and by a further reduction in animal density; and iii) use of a range of counter-measures (catch crops, minimum tillage, control of biological processes, etc.) depending on how sensitive the farming system, soil and climate are to the risk of nitrate leaching.  相似文献   

19.
The types and rates of pollutant emissions from a coal-fired power plant depend upon plant design, coal characteristics, and environmental control policy. In the past, air pollution regulations were often promulgated without rigorous analysis of the resulting energy penalties and secondary environmental impacts that occur in other environmental media (air, land, or water), which are counterproductive to overall environmental quality. This paper describes a Comparative Assessment Model that has been developed to consider systematically such tradeoffs for conventional and advanced coal-to-electric technologies. The model is applied to quantify the secondary (“cross-media”) environmental and resource impacts resulting from alternative air pollution control policies that reduce sulfur dioxide emissions from a 1000 MW power plant. Multimedia pollutant burdens are presented, together with the increased requirements for coal, limestone, and water that are incurred in generating a fixed net quantity of electricity. The development of sound public policy requires that environmental regulations be sensitive to adverse effects in all environmental media, and that tradeoffs involved in the regulation of specific pollutants to one medium be rigorously and systematically characterized.  相似文献   

20.
Structural insulated panels (SIPs) have significant environmental and energy advantages. However, the tight structure that results may cause degraded indoor air quality and the potential release of volatile organic compounds (VOCs) from these layered materials must be considered. A physically based model for predicting VOC emissions from multi-layer materials is described. Fugacity is used to eliminate the concentration discontinuities at the interface between layers. This avoids an obstacle associated with numerically simulating mass transfer in composite materials. The numerical model is verified for a double-layer system by comparing predicted concentrations to those obtained with a previously published analytical model. In addition, hexanal emissions from multi-layer SIPs are simulated to demonstrate the usefulness of the fugacity approach. Finally, the multi-layer model is used to investigate the impact that clay/polyurethane nanocomposite diffusion barriers can have on VOC emissions. Indoor gas-phase concentrations can be greatly reduced with a barrier layer on the surface, thereby minimizing the environmental impact of SIPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号