首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对时间因素对钻屑瓦斯解吸指标K1测定结果的影响,采用恒温瓦斯放散试验深入分析钻屑瓦斯解吸指标K1测定理论的准确性,总结因时间因素导致K1值测定误差所带来的现场问题。研究结果表明:K1值的测定误差与时间关系密切,测定启动时间越晚,误差越大;测定启动时间由第1 min延后至第2 min,绝对误差和相对误差最大值分别增加0.081 cm3/(g·min1/2)和2.20%;高瓦斯压力条件矿井或煤层的局部高瓦斯压力区域、构造煤发育区的钻屑瓦斯解吸指标K1值测定结果偏低,测定误差偏大。研究结果可为煤与瓦斯突出预测水平的提升提供技术支撑。  相似文献   

2.
针对矿井在施工排放钻孔局部防突措施时,已知排放时间,如何确定排放钻孔孔径和钻孔间距这一难题,提出一种钻屑量和钻屑瓦斯解吸指标现场测试法,结合数值模拟计算,确定不同孔径排放钻孔有效排放半径随时间的变化规律。研究结果表明:同一孔径排放钻孔,随着排放时间的增加,有效排放半径呈幂指数增大;不同孔径排放钻孔,随着排放钻孔直径的增加,有效排放半径呈幂指数增大。研究结论对矿井选取合适的排放钻孔孔径及布置参数具有指导意义。  相似文献   

3.
工作面突出危险性预测是防治煤与瓦斯突出的一个重要环节,提高预测指标测定的准确性对于减少"低指标突出"现象,保证安全生产有重要意义。钻屑解吸指标K1是工作面煤与瓦斯突出预测的重要指标之一。基于扩散理论和钻屑瓦斯解吸指标K1物理意义建立了K1的数学表达式,根据该式研究了瓦斯压力、损失时间、煤粒粒度、扩散系数对K1的影响。结果表明:钻屑解吸指标K1与瓦斯压力呈幂指数关系;相同条件下,损失时间越长测得的K1越小,并且钻屑的粒度越小表现越明显;扩散系数表征瓦斯绕过微孔和煤基质的能力,相同条件下扩散系数越大测得的K1越大;煤粒粒度对K1的影响较大,现场测定过程中煤粒粒度组成对获得真实的K1和准确的临界值至关重要。  相似文献   

4.
运用灰色关联分析法和临界值迫近度分析法,对钻屑瓦斯解吸指标、最大钻屑量以及钻屑温度差这3个指标的实测数据进行分析处理,考察了它们对发耳矿煤与瓦斯突出预测的敏感性,比较其突出危险敏感性的大小,找到突出预测敏感指标.  相似文献   

5.
为研究取芯管取芯过程中压力与温度对损失瓦斯量的影响,以及t法的偏差,利用自主研发的取芯管取芯过程模拟测试装置,基于模拟试验的相似性,开展不同加热功率下取芯过程模拟试验与室温(30 ℃)对比,以及变温条件下不同吸附压力取芯过程模拟试验。结果表明:前30 min煤芯瓦斯解吸曲线符合Qt=a+b/[1+(t/t0)c]。吸附压力一定时,取芯过程模拟测试的煤芯瓦斯解吸率均大于室温下的对比测试,3~16 min(退钻过程)温度对损失量的影响大于0~3 min(取芯过程);随着加热功率的增加,煤芯瓦斯解吸量增大,煤芯损失瓦斯量的模拟值亦增大;t法推算值与模拟值的绝对误差随加热功率的增大而增大,相对误差在65.08%~70.79%;加热功率一定时,随着吸附压力的增加,煤芯瓦斯解吸量愈大,煤芯损失瓦斯量t法推算值增大,模拟值亦增大;t法推算值与模拟值的绝对误差随吸附压力的增大而增大,相对误差在68.21%~72.13%。  相似文献   

6.
煤与瓦斯突出预测技术研究现状及发展趋势   总被引:42,自引:7,他引:35  
对矿井煤与瓦斯突出预测方法的研究现状及发展趋势进行了论述及分析。目前我国大量使用的是钻屑量S、钻孔瓦斯涌出初速度q、瓦斯解吸指标Δh2 、瓦斯放散指数ΔP等钻孔静态预测方法 ,这些方法花费大量的人力、物力和财力 ,而且准确性较低。而声发射和电磁辐射等方法是很有前途的预测方法。未来煤与瓦斯突出预测的发展趋势是 ,利用声发射监测技术对变形破裂剧烈区域进行定位 ,利用电磁辐射监测技术工作面非接触连续预测 ,再结合现有的环境监测系统监测的瓦斯动态涌出对煤与瓦斯突出现象进行准确预测  相似文献   

7.
为了研究分析不同含水率对煤粒瓦斯扩散的影响,以平煤八矿构造煤为研究对象,利用瓦斯扩散试验装置,测定不同含水率条件下煤粒瓦斯解吸量,对比分析不同扩散模型,优选适合描述含水煤粒瓦斯解吸全过程的扩散模型,进而研究不同含水率对煤粒瓦斯扩散系数的影响。研究结果表明:相同时段下,干燥煤样的累计瓦斯解吸量最大,随着含水率增加煤样的累计瓦斯解吸量越来越小,水分的增加封堵了瓦斯扩散通道,在煤微孔隙内产生一定的蒸气压增大了瓦斯扩散的阻力使得单位时间内的瓦斯解吸量不断减小;通过3种扩散模型的对比发现幂函数模型在误差大小和稳定性方面都优于其他2种模型;利用该幂函数模型对扩散系数进行计算得出4种含水率对煤粒扩散系数的影响发现,扩散系数均经历前期快速下降和后期缓慢下降2个阶段,扩散系数随含水率的增大而减小且扩散速率趋于稳定。  相似文献   

8.
水分是含瓦斯煤粒扩散规律的重要影响因素之一,运用自制设备,试验研究当水分小于等于平衡水时,3种变质程度煤样的瓦斯扩散量、扩散速度和扩散系数随水分、扩散时间的变化规律;基于气体在多孔介质内的吸附解吸理论和Fick扩散定律,分析水分对瓦斯在煤粒内扩散动力参数和动态过程的影响机理。结果表明,在不大于煤样平衡水分条件下,高、中、低变质程度煤样的瓦斯极限扩散量、解吸速度和瓦斯扩散系数随水分增加而显著降低,同一种变质程度干燥煤样的瓦斯扩散系数基本是平衡水分煤样的3~5倍;水分的增加降低了煤粒内的瓦斯初始质量浓度和扩散系数,进而大幅度降低了瓦斯扩散速度;水分子更容易占据煤基质表面吸附位,致使煤对瓦斯的吸附量减少,水分子在煤粒内表面发生多层吸附,而堵塞部分的瓦斯分子在煤粒内表面扩散,缩小了扩散通道,增大了瓦斯扩散阻力,导致含瓦斯煤粒的瓦斯扩散系数减小。  相似文献   

9.
为了研究煤层钻屑粒度随钻进深度分布规律,选取具有冲击危险性的平煤八矿己15煤作为研究对象,采取钻屑量测试和孔口瓦斯浓度监测,通过筛分实验煤样并应用Rosin Rammler分布模型,探究了钻屑粒度和钻屑量大小随孔深变化关系,分析不同点钻屑粒度分布特征。结果表明:小于0.075 mm钻屑粒度分布随孔深变化与钻屑量变化规律相吻合;不同钻孔随深度变化分别对应不同Rosin Rammler分布函数,随着应力过渡越平缓,粒径分布宽度系数n值越小,煤体应力越大粒径相关系数D越大;不同范围钻屑粒度占比大小也会影响钻屑量大小;在钻屑量较大时,孔口瓦斯体积分数会出现增高现象。通过对钻屑粒度分布规律分析,更好地了解深部煤体应力分布,有助于冲击危险的预警。  相似文献   

10.
煤的瓦斯放散性能是影响煤与瓦斯突出的一个重要因素,瓦斯放散初速度是表征瓦斯放散性能的主要指标之一,其影响因素较多。采用"四因素、四水平"正交试验方法,通过自主研发的MFGE-1型瓦斯放散初速度试验台,测定了粒径、水分、吸附时间及温度等影响下的瓦斯放散初速度;应用方差分析等方法,研究各因素对煤样瓦斯放散性能影响的敏感性,以及两者相互间的变化规律。结果表明:自主研发的瓦斯放散初速度试验装置可满足试验测定要求;粒径对瓦斯放散初速度的影响最大,其次是水分、温度及吸附时间;绘制了各因素对瓦斯放散初速度影响的直观分析图,得到瓦斯放散初速度随粒径、水分及温度增大而减小,随吸附时间增加而增大;与粒径、水分呈指数关系,与温度呈线性关系,与吸附时间呈幂函数关系,并构建了多因素影响下的综合模型。  相似文献   

11.
针对现有突出预测敏感指标确定方法存在的问题,基于瓦斯压力和瓦斯含量的联系,考察了临界压力和含量的对应关系,确定了瓦斯压力为杨柳煤矿10#煤层区域预测敏感指标,临界值为0.74MPa;采用实验室分析和现场验证相结合的手段,通过引入相对误差和迫近度等分析方法,确立了钻屑解吸指标Δh2为10#煤层局部预测敏感指标,临界值为180 Pa;结合我国目前防突工作基本流程,确定了突出预测敏感指标体系的构建方法,构建了杨柳煤矿10#煤层突出预测敏感指标体系。  相似文献   

12.
为提高低透突出煤层的瓦斯抽采效果,在薛湖煤矿2303风巷进行了深孔水力致裂与潜孔抽采联合消突技术的试验应用.首先结合现场实际情况,从注水压力、钻孔布置和现场施工等方面研究了施工技术工艺,然后从应力分布、瓦斯解吸速度、钻屑瓦斯解吸指标、瓦斯抽采浓度等方面考察了水力致裂增透效果和联合消突技术的消突效果.应用表明,深孔水力致裂增透与浅孔抽采联合消突技术,工作面前方支承压力、瓦斯解吸速度、钻屑瓦斯解吸指标均大幅降低,瓦斯抽采浓度明显提高,抽采效果明显,为同类矿井的防突工作提供了可借鉴的技术和经验.  相似文献   

13.
基于扩散理论和热力学基本原理建立了瓦斯解吸过程温度变化公式,以及温度变化与瓦斯膨胀能、瓦斯解吸量的关系式,在此基础上研究了煤粒粒度、瓦斯压力、吸附常数a、扩散系数对解吸过程温度变化的影响及温度变化与煤与瓦斯突出的关系.结果表明:随煤粒粒度减小,瓦斯压力、瓦斯含量增大,扩散能力增强,瓦斯解吸引起的温度下降幅度增大.随解吸过程中温度降低,瓦斯解吸量、瓦斯膨胀能呈明显增大趋势,由此可见,解吸过程中温度下降幅度越大,煤层煤与瓦斯突出危险性越大.  相似文献   

14.
为了解决长钻孔取样暴露时间长、损失瓦斯量推算误差偏大的问题,采用自主研发的试验系统对煤屑暴露初期长时间段内的瓦斯解吸规律进行试验研究,找出了极限瓦斯解吸量与吸附平衡压力的关系,并对Qt=K t和Qt=Q∞(1-eλt+A)两个理论公式在不同时间段内的拟合效果和损失量推算误差进行对比。结果表明,两公式在不同时间段内的拟合效果显著,决定系数均在0.94以上。从损失瓦斯量的推算误差来看,前者在30 min内的推算误差较小,相对误差最大值小于7%,但随拟合时间段的向后推移,推算误差越来越大,最小值在40%以上;后者在30 min内的推算误差较大,相对误差都在24%以上,而在30~70 min和70~120 min内的推算误差较小,相对误差都在11%以下。因此,前者适合煤样暴露短时间内损失瓦斯量的推算,后者则适用于暴露长时间后的损失瓦斯量推算,联合两个公式,按时间段推算损失瓦斯量,就可以减少长时间段内的计算误差。  相似文献   

15.
为研究不同煤体结构煤在瓦斯吸附解吸与放散规律方面的差异性,对寺家庄矿15#煤层煤样进行等温吸附/解吸试验与恒温瓦斯放散试验,研究了构造煤与原生煤的吸附/解吸参数以及在不同吸附压力下的瓦斯放散特征。研究结果表明:构造煤的瓦斯吸附能力稍大于原生结构煤,吸附常数a值较原生煤提高6.3%左右;构造煤与原生煤的瓦斯放散曲线有较大差异,尤其体现于瓦斯放散初期,构造煤瓦斯放散速度更大,就达到极限解吸量所需时间而言,构造煤所需时间更短;瓦斯放散曲线拟合结果表明,孙重旭式与乌斯基诺夫式能够分别准确描述原生煤与构造煤的瓦斯放散过程。  相似文献   

16.
为了研究软硬煤瓦斯解吸规律,搭建了大质量瓦斯解吸实验系统,进行了不同变质程度软硬煤的瓦斯解吸实验,对比分析了软硬煤的孔隙结构特征,查明了软硬煤的瓦斯解吸规律及影响因素。研究结果表明:软煤相对于硬煤,具有更多的瓦斯解吸总量和更快的解吸速度,采用幂函数可以较好的描述软硬煤的解吸规律,煤的破坏类型和变质程度是影响瓦斯解吸量的主要因素;软硬煤瓦斯解吸规律的差异性主要受煤的孔隙结构影响,软煤总孔容是硬煤的1.18~2.14倍,且软煤中孔及大孔更为发育,这为瓦斯解吸提供了更优质的通道;软煤相对硬煤在同等条件下变质程度更高,煤吸附甲烷的能力更强,这有利于软煤瓦斯解吸量的增加及解吸速度的加快。研究成果为准确测试煤层瓦斯含量和钻屑解吸指标提供了理论依据。  相似文献   

17.
自主设计了煤粒瓦斯吸附-放散试验系统,以郑煤集团告成煤矿普遍存在的中等变质程度贫瘦软硬煤为研究对象,对比分析了贫瘦煤软硬煤前120 min瓦斯解吸规律,试验结果表明,瓦斯解吸初期软煤的解吸速度都大于硬煤的解吸速度,软煤在前30 min解吸量占总解吸累积量的84.07%以上,而硬煤仅为67.76%;对比了多种描述瓦斯解吸-扩散过程的经验公式,发现孙重旭式和文特式拟合效果最好,且相关指数的变化范围较小。  相似文献   

18.
为准确测定煤巷工作面前方卸压带宽度,基于工作面前方煤体涌出的瓦斯流量与地应力之间的关系,提出钻孔瓦斯连续流量法测定卸压带宽度,并从理论上分析该方法的可行性;采用煤巷突出线预测装置在薛湖煤矿2303风巷测定钻孔瓦斯流量。研究结果表明:瓦斯流量曲线先增大后减小,瓦斯流量曲线峰值为卸压带边界,确定该工作面前方卸压带宽度为9~10 m;采用钻屑量与钻屑瓦斯解吸指标Δh_2测定的工作面前方卸压带宽度为9. 5~10 m,与钻孔瓦斯续流量法测定结果一致,验证了钻孔瓦斯连续流量法测定卸压带宽度的可靠性。  相似文献   

19.
为揭示不同温度下瓦斯吸附-解吸-渗流全过程煤体变形的差异性,应用自主研发的煤体瓦斯流固耦合试验系统,研究三轴应力加载下瓦斯吸附-解吸-渗流及全过程煤体变形随温度变化的响应特征。试验结果表明:瓦斯吸附阶段,煤体变形量与吸附时间呈Langmuir型上升变化;瓦斯解吸阶段,煤体变形量与解吸时间呈指数型衰减趋势;瓦斯渗流阶段,煤体变形量与时间呈幂函数上升趋势。瓦斯吸附量、渗透率及过程中煤体变形量均随温度升高而降低,瓦斯解吸率随温度升高而增大;煤体变形量与瓦斯吸附量、解吸量、渗透率呈正相关关系。温度效应对全过程煤体变形具有显著影响。  相似文献   

20.
为研究不同质量分数水分对煤体瓦斯放散特征的影响规律,选取3种不同变质程度的典型煤样,测试了水分作用下的煤体瓦斯放散初速度,并结合扫描电镜和压汞法研究了煤体孔裂隙分布特征,阐明了水分对煤体瓦斯放散初速度的微观影响机理.结果表明:水分对煤体瓦斯放散初速度起到了明显的抑制作用,煤阶越高,水分的影响程度越大;水分对褐煤、烟煤和无烟煤瓦斯放散初速度影响规律的差异性与煤体孔隙分布有关;随水分质量分数增加,褐煤瓦斯放散初速度表现为先快速降低后缓慢减小,烟煤△p呈线性衰减,无烟煤则表现为先小幅降低后急剧下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号