首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In social insects, there is often a brief period following eclosion when workers are highly acceptable in alien nests of their own or other species. This study tested for such an acceptance period in the facultatively polygynous ant, Leptothorax curvispinosus, and compared the duration and effectiveness of this period for conspecific and heterospecific introductions. Workers that eclosed and aged for 1–70 h or 30 days in isolation were introduced into either their parental nests (n=24), alien conspecific nests (n=265), or nests of the closely related and biologically similar species, L. longispinosus (n=341). In alien conspecific nests, acceptance was maximal for workers aged 1–12 h at introduction (67.7% not attacked, 75.8% adopted) and gradually decreased until the level of nonaggression (after 60 h) and adoption (after 36 h) were not significantly different from 30-day-old workers (5.9% not attacked, 17.6% adopted). In heterospecific nests, acceptance was maximal for workers aged 1–4 h at introduction (34.8% not attacked, 37.0% adopted) but thereafter was not significantly different from 30-day-old workers (5.6% not attacked, 8.3% adopted). In their parental nests, workers were generally accepted regardless of age (4–56 h posteclosion, 95.8% not attacked, 100% adopted); a result that is consistent with previous research on older workers (38–157 days posteclosion). This study demonstrates an acceptance period that is more effective and of longer duration within than between these species but that, under uniform laboratory conditions, is often not necessary for the integration of workers into their parental colonies. Within colonies, acceptance periods might only be important during relatively brief periods in a colony's life history when eclosing workers produce genetically based nestmate recongition cues that are not already represented in the colony and must be learned by colony members (e.g., during early colony growth or following adoption of queens), or when young workers must acquire environmentally based nestmate recognition cues to achieve and maintain acceptability.  相似文献   

2.
Ant colonies may have a single or several reproductive queens (monogyny and polygyny, respectively). In polygynous colonies, colony reproduction may occur by budding, forming multinest, polydomous colonies. In most cases, budding leads to strong genetic structuring within populations, and positive relatedness among nestmates. However, in a few cases, polydomous populations may be unicolonial, with no structuring and intra-nest relatedness approaching zero. We investigated the spatial organisation and genetic structure of a polygynous, polydomous population of Formica truncorum in Finland. F. truncorum shifts nest sites between hibernation and the reproductive season, which raises the following question: are colonies maintained as genetic entities throughout the seasons, or is the population unicolonial throughout the season? Using nest-specific marking and five microsatellite loci, we found a high degree of mixing between individuals of the population, and no evidence for a biologically significant genetic structuring. The nestmate relatedness was also indistinguishable from zero. Taken together, the results show that the population is unicolonial. In addition, we found that the population has undergone a recent bottleneck, suggesting that the entire population may have been founded by a very limited number of females. The precise causes for unicoloniality in this species remain open, but we discuss the potential influence of intra-specific competition, disintegration of recognition cues and the particular hibernation habits of this species.  相似文献   

3.
The impact of intranest relatedness on nestmate recognition was tested in a population of polydomous and monodomous nests of the mound-building ant Formica pratensis. Nestmate recognition was evaluated by testing aggression levels between 37 pairs of nests (n=206 tests). Workers from donor colonies were placed on the mounds of recipient nests to score aggressive interactions among workers. A total of 555 workers from 27 nests were genotyped using four DNA microsatellites. The genetic and spatial distances of nests were positively correlated, indicating budding and/or fissioning as spread mechanisms. Monodomous and polydomous nests did not show different aggression levels. Aggression behavior between nests was positively correlated with both spatial distance and intranest relatedness of recipient colonies, but not with genetic distance or intranest relatedness of donor colonies. Multiple regression analysis revealed a stronger effect of spatial distance than of genetics on aggression behavior in this study, indicating that the relative importance of environment and genetics can be variable in F. pratensis. Nevertheless, the positive regression between intranest relatedness of recipient colonies and aggression in the multiple analysis supports earlier results that nestmate recognition is genetically influenced in F. pratensis and further indicates that foreign label rejection most likely explains our data.  相似文献   

4.
Under favorable conditions, the mound-building ant Formica exsecta may form polydomous colonies and can establish large nest aggregations. The lack of worker aggression towards nonnestmate conspecifics is a typical behavioral feature in such social organization, allowing for a free flux of individuals among nests. However, this mutual worker toleration may vary over the seasons and on spatial scales. We studied spatio-temporal variation of worker–worker aggression within and among nests of a polydomous F. exsecta population. In addition, we determined inter- and intracolony genetic relatedness by microsatellite DNA genotyping and assessed its effect on nestmate recognition. We found significant differences in the frequency of worker exchange among nests between spring, summer, and autumn. Moreover, we found significant seasonal variation in the level of aggression among workers of different nests. Aggression levels significantly correlated with spatial distance between nests in spring, but neither in summer nor in autumn. Multiple regression analysis revealed a stronger effect of spatial distances rather than genetic relatedness on aggressive behavior. Because nestmate discrimination disappeared over the season, the higher aggression in spring is most plausibly explained by cue intermixing during hibernation.  相似文献   

5.
In the polydomous ant species Cataglyphis iberica, nests belonging to the same colony are completely separated during hibernation. In order to examine whether this separation induces changes both in the hydrocarbon profile and in recognition ability between adult nestmates, we separated groups of workers for several months under two different conditions: at hibernation temperature and at room temperature. At room temperature, recognition remained unchanged but separation led to longer mutual antennations relative to non-separated controls. When half of a colony was placed under hibernation conditions, antennal interactions also increased in duration and a few aggressive interactions emerged between separated ants. This aggressiveness never reached the intercolonial level observed in this species. In both cases, the hydrocarbon profiles showed differences between individuals after separation while remaining homogeneous within each nest. This chemical modification may induce the longer antennations observed. After separated groups were reunited, individuals recovered their previous antennation pattern and a convergence in hydrocarbon profiles was again observed. These concurrent observations suggest that hydrocarbons are transferred between nestmates. In C. iberica, the formation of the colonial odor seems to follow the “Gestalt” model which allows all satellite nests of a colony to have a common colonial odor. In the field, temporary nest isolation during hibernation may induce divergence between satellites. The role of adult transport in connecting nests during the active season to obtain an efficient Gestalt odor is discussed. Received: 16 June 1997 / Accepted after revision: 25 October 1997  相似文献   

6.
The ability to discriminate degrees of relatedness may be expected to evolve if it allows unreciprocated altruism to be preferentially directed towards kin (Hamilton in J Theor Biol 7:1–16, 1964). We explored the possibility of kin recognition in the primitively eusocial halictid bee Lasioglossum malachurum by investigating the reliability of worker odour cues that can be perceived by workers to act as indicators of either nest membership or kinship. Cuticular and Dufour’s gland compounds varied significantly among colonies of L. malachurum, providing the potential for nestmate discrimination. A significant, though weak, negative correlation between chemical distance and genetic relatedness (r = −0.055, p < 0.001) suggests a genetic component to variation in cuticular bouquet, but odour cues were not informative enough to discriminate between different degrees of relatedness within nests. This pattern of variation was similar for Dufour’s gland bouquets. The presence of unrelated individuals within nests that are not chemically different from their nestmates suggests that the discrimination system of L. malachurum is prone to acceptance errors. Compounds produced by colony members are likely combined to generate a gestalt colony chemical signature such that all nestmates have a similar smell. The correlation between odour cues and nest membership was greater for perceived compounds than for non-perceived compounds, suggesting that variability in perceived compounds is a result of positive selection for nestmate recognition despite potentially stabilising selection to reduce variability in odour differences and thereby to reduce costs derived from excessive intracolony nepotistic behaviour.  相似文献   

7.
Many ant species are polydomous, forming multiple spatially segregated nests that exchange workers and brood. However, why polydomy occurs is still uncertain. We investigated whether colonies of Crematogaster torosa form new polydomous nests to better exploit temporally stable food resources. Specifically, we tested the effect of food presence or absence and distance on the likelihood that colonies would form a new nest. Because this species also forms little-known structures that house only workers without brood (outstations), we also compared the function of this structure with true nests. Laboratory-reared colonies were connected to a new foraging arena containing potential nest sites with or without food for 4 months. When food was present, most colonies formed polydomous nests nearby and the remainder formed outstations. When food was absent, the behavior of colonies differed significantly, frequently forming outstations but never polydomous nests. Distance had no effect on the type of structure formed, but when food was present, a larger proportion of the workforce moved shorter distances. Workers often fortified the entrances to both structures and used them for storage of dried insect tissue (“jerky”). In an investigation of spatial fidelity, we found that workers on the between-nest trail were associated with the original nest, whereas workers collecting food were more likely to be associated with the new nest or outstation. C. torosa appears to have a flexible colony structure, forming both outstations and polydomous nests. Polydomous nests in this species were associated with foraging and were only formed near food resources.  相似文献   

8.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

9.
Summary Colony structure and reproductive investment were studied in a population of Myrmica punctiventris. This species undergoes a seasonal cycle of polydomy. A colony overwinters in entirety but fractionates into two or more nest sites during the active season and then coalesces in the fall. Colony boundaries were determined by integrating data on spatial pattern, behavioral compatability, and genetic relatedness as revealed by protein electrophoresis. Colonies contained at most one queen. Consequently, a colony consisted of one queenright nest and one or more queenless nests. Furthermore, estimates of relatedness were fully consistent, with queens being single mated. M. punctiventris therefore has a colony genetic structure that conforms to the classical explanation of the maintenance of worker sterility by kin selection. Kin selection theory predicts that workers would favor a female-biased allocation ratio while selection on queens would favor equal investment in males and females. We predicted that in polydomous populations, queenless nests would rear more female reproductives from diploid larvae than queenright nests. There was a significant difference between queenright and queenless nests in sexual allocation; queenless nests allocated energy to reproductive females whereas queenright nests did not. At neither the nest nor colony levels did worker number limit sexual production. We also found that nests tended to rear either males or females but when colony reproduction was summed over nests, the sexes were more equally represented. The difference in allocation ratios between queenless and queenright nests was attributed solely to queen presence/absence. Our work shows that polydomy provides an opportunity for workers to evade queen control and thereby to sexualize brood.Offprint requests to: L.E. Snyder at the current address  相似文献   

10.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

11.
The genetic organization of colonies of the subterranean termite Reticulitermes flavipes in two subpopulations in Massachusetts was explored using five polymorphic allozymes and double-strand conformation polymorphism (DSCP) analysis of the mitochondrial control region. Empirically obtained estimates of worker relatedness and F-statistics were compared with values generated by computer simulations of breeding schemes to make inferences about colony organization. In one study site (G), worker genotypes indicated the presence of a mixture of colonies headed by monogamous outbred primary reproductives and colonies headed by inbreeding neotenic reproductives, both colony types having limited spatial ranges. A second site (S) was dominated by several large colonies with low relatedness among nestmates. Mixed DSCP haplotypes in three colonies indicated that nestmates had descended from two or three unrelated female reproductives. Computer simulations of breeding schemes suggested that positive colony inbreeding coefficients at site S resulted from either commingling of workers from different nests or different colonies. Such an exchange of workers between nests corresponds to the multiple-site nesting lifetype of many subterranean termites and resembles colony structure in polycalic Formica ants. Our study demonstrates considerable variation in R. flavipes colony structure over a small spatial scale, including colonies headed by monogamous outbred primary reproductives, colonies containing multiple inbred neotenic reproductives and large polydomous colonies containing the progeny of two or more unrelated queens, and suggests that the number of reproductives and nestmate relatedness change with colony age and size.  相似文献   

12.
Recent research has shown that entrance guards of the stingless bee Tetragonisca angustula make less errors in distinguishing nestmates from non-nestmates than all other bee species studied to date, but how they achieve this is unknown. We performed four experiments to investigate nestmate recognition by entrance guards in T. angustula. We first investigated the effect of colony odours on acceptance. Nestmates that acquired odour from non-nestmate workers were 63% more likely to be rejected while the acceptance rate of non-nestmates treated with nestmate odour increased by only 7%. We further hypothesised that guards standing on the wax entrance tube might use the tube as an odour referent. However, our findings showed that there was no difference in the acceptance of non-nestmates by guards standing on their own colony’s entrance tube versus the non-nestmate’s entrance tube. Moreover, treatment of bees with nestmate and non-nestmate resin or wax had a negative effect on acceptance rates of up to 65%, regardless of the origin of the wax or resin. The role of resin as a source of recognition cues was further investigated by unidirectionally transferring resin stores between colonies. Acceptance rates of nestmates declined by 37% for hives that donated resin, contrasting with resin donor hives where acceptance of non-nestmates increased by 21%. Overall, our results confirm the accuracy of nestmate recognition in T. angustula and reject the hypothesis that this high level of accuracy is due to the use of the wax entrance tubes as a referent for colony odour. Our findings also suggest that odours directly acquired from resin serve no primary function as nestmate recognition cues. The lack of consistency among colonies plus the complex results of the third and fourth experiments highlight the need for further research on the role of nest materials and cuticular profiles in understanding nestmate recognition in T. angustula.  相似文献   

13.
Summary Laboratory-overwintered paper wasp (Polistes metricus) females preferentially associate on new nests with former nestmates (presumably their sisters) rather than with non-nestmates in the absence of cues associated with their natal nests or nest sites. Females isolated from conspecifics and nests for 74–99 days retain the ability to discriminate nestmates from nonnestmates.  相似文献   

14.
Social insects rank among the most abundant and influential terrestrial organisms. The key to their success is their ability to form tightly knit social groups that perform work cooperatively, and effectively exclude non-members from the colony. An extensive body of research, both empirical and theoretical, has explored how optimal acceptance thresholds could evolve in individuals, driven by the twin costs of inappropriately rejecting true nestmates and erroneously accepting individuals from foreign colonies. Here, in contrast, we use agent-based modeling to show that strong nestmate recognition by individuals is often unnecessary. Instead, highly effective nestmate recognition can arise as a colony-level property from a collective of individually poor recognizers. Essentially, although an intruder can get by one defender when their odor cues are similar, it is nearly impossible to get past many defenders if there is the slightest difference in cues. The results of our models match observed rejection rates in studies of ants, wasps, and bees. We also show that previous research in support of the optimal threshold theory approach to the problem of nestmate recognition can be alternatively viewed as evidence in favor of the collective formation of a selectively permeable barrier that allows in nestmates (at a significant cost) while rejecting non-nestmates. Finally, this work shows that nestmate recognition has a stronger task allocation component than previously thought, as colonies can nearly always achieve perfect nestmate recognition if it is cost effective for them to do so at the colony level.  相似文献   

15.
Efficient and robust transportation networks are key to the effectiveness of many natural systems. In polydomous ant colonies, which consist of two or more spatially separated but socially connected nests, resources must be transported between nests. In this study, we analyse the network structure of the inter-nest trails formed by natural polydomous ant colonies. In contrast to previous laboratory studies, the natural colonies in our study do not form minimum spanning tree networks. Instead the networks contain extra connections, suggesting that in natural colonies, robustness may be an important factor in network construction. Spatial analysis shows that nests are randomly distributed within the colony boundary and we find nests are most likely to connect to their nearest neighbours. However, the network structure is not entirely determined by spatial associations. By showing that the networks do not minimise total trail length and are not determined only by spatial associations, the results suggest that the inter-nest networks produced by ant colonies are influenced by previously unconsidered factors. We show that the transportation networks of polydomous ant colonies balance trail costs with the construction of networks that enable efficient transportation of resources. These networks therefore provide excellent examples of effective biological transport networks which may provide insight into the design and management of transportation systems.  相似文献   

16.
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis. Received: 2 October 1997 / Accepted after revision: 10 January 1998  相似文献   

17.
Multiple-queen (polygyne) colonies of the introduced fire ant Solenopsis invicta present a paradox for kin selection theory. Egg-laying queens within these societies are, on average, unrelated to one another, and the numbers of queens per colony are high, so that workers appear to raise new sexuals that are no more closely related to them than are random individuals in the population. This paradox could be resolved if workers discriminate between related and unrelated nestmate sexuals in important fitness-related contexts. This study examines the possibility of such nepotism using methods that combine the following features: (1) multiple relevant behavioral assays, (2) colonies with an unmanipulated family structure, (3) multiple genetic markers with no known phenotypic effects, and (4) a statistical technique for distinguishing between nepotism and potentially confounding phenomena. We estimated relatedness between interactants in polygyne S. invicta colonies in two situations, workers tending egg-laying queens and workers feeding maturing winged queens. In neither case did we detect a significant positive value of relatedness that would implicate nepotism. We argue that the non-nepotistic strategies displayed by these ants reflect historical selection pressures experienced by native populations, in which nestmate queens are highly related to one another. The markedly different genetic structure in native populations may favor the operation of stronger higher-level selection that effectively opposes weaker individual-level selection for nepotistic interactions within nests. Received: 28 June 1996 / Accepted after revision: 6 October 1996  相似文献   

18.
In group-level recognition, discriminators use sensory information to distinguish group members and non-members. For example, entrance guards in eusocial insect colonies discriminate nestmates from intruders by comparing their odour with a template of the colony odour. Despite being a species-rich group of eusocial bees closely related to the honey bees, stingless bee nestmate recognition is a relatively little-studied area. We studied Frieseomelitta varia, a common Brazilian species of stingless bee known as marmelada. By measuring the rejection rates of nestmate and non-nestmate worker bees by guards, we were able to show that guards became significantly less accepting (from 91 to 46%) of nestmates that had acquired odour cues from non-nestmate workers; however, guards did not become significantly more accepting (from 31 to 42%) of non-nestmates that had acquired equivalent amounts of odour cues from the guard’s nestmates. These data strongly suggest that guards use an “undesirable–absent” system in recognition, whereby incoming conspecific workers are only accepted if undesirable cues are absent, despite the presence of desirable cues. We suggest that an undesirable–absent system is adaptive because robbing by conspecifics may be an important selective factor in F. varia, which would lead to selection for a non-permissive acceptance strategy by guards.  相似文献   

19.
Summary Bowerbirds (Ptilonorhynchidae) have been described as exhibiting exploded lek mating patterns. Quantitative documentation and analysis of spatial dispersion, however, is lacking for most species despite its importance to a fundamental understanding of social organization. We studied Macgregor's Bowerbird (Amblyornis macgregoriae) in eastern New Guinea in 1980 and 1981 to quantify spatial distribution and selection of bower sites in relation to ecological and social factors. Forty-two bower sites were located in approximately 750 ha of mid-montane forest. They were linearly and regularly spaced along ridges with a mean inter-bower distance of 169±64 m SD (range 75–348 m). Statistical analysis showed males to be regularly spaced within available habitat. Discriminant analysis of seven habitat variables measured along utilized ridge lines showed that bower sites differed significantly from potentially available sites with respect to slope and width of ridge, closure of canopy, and density of saplings. Placement of bowers with respect to these factors was not correlated with inter-bower distance. Most males maintained only one bower; four (10%) maintained two bowers simultaneously. Males spent an average of 54% of daylight hours within an activity center of 15–20 m radius surrounding the bower and aggressively defended this area against conspecific males. Marauding pressure on bowers was high, and 39% of all observed mating attempts (n=18) were disrupted by neighboring males. Macgregor's Bowerbird exhibits a social system that appears to be intermediate between lek behavior and territoriality, combining the social dynamics and opportunism of the former and the uniform field of display sites and nests of the latter. We hypothesize that dispersion in this species is partly due to males buffering their display space against intruder pressure. We suggest that strict adherence to the dispersion criterion in classifying promiscuous mating systems may be inappropriate.  相似文献   

20.
In social insects, queens are likely to “honestly” inform their nestmates of their presence and fertility status through pheromonal communication. Cuticular hydrocarbons (CHCs) have been reported to be effective nestmate discriminators and strongly suspected to act as fertility signals, at least in some species. The use of the same chemical bouquet (i.e., the CHC profile) to convey two fundamentally different information seems puzzling. However, a recent threshold model proposes a hierarchy in the discriminating processes, i.e., fertility signals can only be perceived if nestmate recognition has been reached (Le Conte and Hefetz, Annu Rev Entomol 53:523–542, 2008). Here, we developed a simple behavioral bioassay based on chemical recruitment toward a queen placed outside the nest in two dolichoderine ants (Linepithema humile and Tapinoma erraticum), which allowed us to investigate the interplay between fertility signaling and colonial recognition. Using queen corpses of various origins (nestmates or aliens) and physiological states (fertile or infertile; mated or unmated), we demonstrated that nestmate recognition cues clearly override fertility signals under our experimental conditions. Indeed, while nestmate infertile queens were largely ignored by the workers, nestmate fertile queens (mated or not) induced worker recruitment, whereas alien fertile queens did not and were aggressed by the workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号