首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Grman E 《Ecology》2012,93(4):711-718
Theory suggests that cheaters threaten the persistence of mutualisms, but that sanctions to prevent cheating can stabilize mutualisms. In the arbuscular mycorrhizal symbiosis, reports of parasitism suggest that reductions in plant carbon allocation are not universally effective. I asked whether plant species differences in mycorrhizal responsiveness would affect both their susceptibility to parasitism and their reduction in allocation to non-beneficial arbuscular mycorrhizal fungi (AMF) in high-phosphorus soils. In a greenhouse experiment, I found that two C3 grasses, Bromus inermis and Elymus repens, effectively suppressed root colonization and AMF hyphal abundance. Increases in soil phosphorus did not reduce the degree to which AMF increased plant biomass. In contrast, two C4 grasses, Andropogon gerardii and Schizachyrium scoparium, more weakly reduced root colonization and failed to suppress AMF hyphal abundance. Consequently, they experienced strong declines in their response to AMF, and one species suffered parasitism. Thus, species differ in susceptibility to parasitism and their reduction in allocation to non-beneficial AMF. These differences may affect the distribution and abundance of plants and AMF, as well as the stability of the mutualism.  相似文献   

2.
Plants can alter soil properties in ways that feed back to affect plant performance. The extent that plant-soil feedback affects co-occurring plant species differentially will determine its impact on plant community structure. Whether feedback operates consistently across similar plant communities is little studied. Here, the same grasses from two eastern U.S. serpentine grasslands and two midwestern tallgrass prairie remnants were examined for plant-soil feedback in parallel greenhouse experiments. Native soils were homogenized and cultured (trained) for a year with each of the four grasses. Feedback was evaluated by examining biomass variation in a second generation of (tester) plants grown in the trained soils. Biomass was lower in soils trained by conspecifics compared to soils trained by heterospecifics in seven of 15 possible cases; biomass was greater in conspecific soils in one other. Sorghastrum nutans exhibited lower biomass in conspecific soils for all four grasslands, so feedback may be characteristic of this species. Three cases from the Hayden prairie site were explained by trainer species having similar effects across all tester species so the relative performance of the different species was little affected; plants were generally larger in soils trained by Andropogon gerardii and smaller in soils trained by S. nutans. Differences among sites in the incidence of feedback were independent of serpentine or prairie soils. To explore the causes of the feedback, several soil factors were measured as a function of trainer species: nutrients and pH, arbuscular mycorrhizal (AM) spore communities, root colonization by AM fungi and putative pathogens, and functional diversity in bacterial communities as indicated by carbon substrate utilization. Only variation in nutrients was consistent with any patterns of feedback, and this could explain the greater biomass in soils trained by A. gerardii at Hayden. Feedback at Nottingham (one of the serpentine sites) differed, most notably for A. gerardii, from that of similar past studies that used different experimental protocols. To understand the consequences of feedback for plant community structure, it is important to consider how multiple species respond to the same plant-induced soil variation as well as differences in the feedback detected between greenhouse and field settings.  相似文献   

3.
丛枝菌根对盐胁迫的响应及其与宿主植物的互作   总被引:1,自引:0,他引:1  
金樑  陈国良  赵银  王晓娟 《生态环境》2007,16(1):228-233
丛枝菌根真菌(Arbuscular Mycorrhizae Fungi,AMF)作为陆地生态系统的组成部分之一,在促进宿主植物对土壤养分和水分的吸收、提高植物生物量生产、调节种群和群落的结构、维持生态系统的稳定性等方面发挥了重要作用。其中,盐渍化是自然生态系统中广泛存在的一种胁迫生境条件,全球盐渍化土地约占耕地总面积的10%,因而探讨AM菌根在此胁迫生境下对宿主植物生长的影响具有重要意义。从以下几个方面,围绕盐胁迫条件、AM菌根和宿主植物三者之间的关系对当前国际上相关领域的研究进展进行了综述:1)AM真菌对盐胁迫的响应,包括菌根共生体形成、菌根侵染率、AM真菌的分布、菌丝体生长发育、孢子的形成和分布等;2)盐胁迫条件下AM菌根对宿主植物的效应,包括AM菌根促进宿主植物对P、N等元素的吸收、降低植物体内Na 的含量、提高光合作用能力,进而提高植物的生物量和对植物的群落结构产生影响等;3)AM菌根提高宿主植物耐盐性的机理,分别从植物根系形态的改变、水分吸收能力的加强、细胞内营养物质的平衡,以及细胞生理代谢的调节等方面对AM菌根促进植物抗盐性的机理进行了剖析。  相似文献   

4.
Polychlorinated biphenyls (PCBs) are typical organic contaminants in the environment. It is indicated that plants and soil microorganisms have a positive synergistic effect on the remediation of PCB-contaminated soil. To investigate the effect of intercropping on arbuscular mycorrhizal (AM) fungal colonization and PCB remediation, a pot-cultivation experiment with two intercropping treatments, corn (Zea mays L.) / ryegrass (Lolium perenne L.) and corn/alfalfa (Medicago sativa L.), and a corn monoculture was conducted in a greenhouse. All treatments were inoculated with Funneliformis mosseae M47V. Plant biomass, root mycorrhizal colonization rate, concentration of PCBs and their homologs in soil, 16S rDNA gene abundance, and community composition measured by Terminal Restriction Fragment Length Polymorphism (T-RFLP) were determined after harvesting the plants. Intercropping significantly increased the root mycorrhizal colonization rate and plant biomass of corn (P < 0.05), as well as the available N content of the soil. A significant difference of the bacterial community composition was found among different treatments (P < 0.05). Compared with corn monoculture, corn/alfalfa intercropping significantly increased soil bacteria abundance (P < 0.05). The dissipation rates of total PCBs, as well as that of penta-chloro biphenyls were significantly increased in the intercropping treatments, when compared to the corn monoculture treatment. Moreover, corn/ryegrass intercropping has a significantly positive effect on the dissipation of tri-chloro biphenyls. Non-metric multidimensional scaling (NMDS) analysis indicated that the PCBs homologues composition were significantly correlated with the relative abundance of 128 bp and 148 bp T-RFs. Corn intercropping with ryegrass or alfalfa has a positive effect on root mycorrhizal colonization rate and plant biomass of corn. Inoculation of AM fungi in intercropping treatments significantly improved the efficiency of PCB remediation by promoting bacterial abundance and shifting the bacterial community composition. In conclusion, intercropping combined with AM fungi have positive synergistic effects on the remediation of PCB-contaminated soils. © 2018 Science Press. All rights reserved.  相似文献   

5.
丛枝菌根对土壤-植物系统中重金属迁移转化的影响   总被引:9,自引:0,他引:9  
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类在自然和农业生态系统中广泛存在并能与多数陆生植物形成共生关系的土壤真菌,在重金属污染土壤中对宿主植物的生长及吸收累积重金属具有重要影响,因而对污染土壤的生物修复具有潜在应用价值。以重金属从根际土壤进入植物并在植物体内再分配过程为主线,介绍丛枝菌根在这一过程中对重金属环境行为,特别是根际土壤中重金属赋存形态及植物吸收重金属的影响。最后,对丛枝菌根影响植物重金属耐性机制研究前沿和菌根修复技术的应用前景进行展望。  相似文献   

6.
喀斯特地区土壤退化,植被定植更新困难,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)具有增强植物养分吸收能力和抵抗逆境胁迫能力。研究喀斯特生境下植物与AMF共生效果,选择优势菌种促进喀斯特植被恢复,对于提高植物定植成活率具有重要作用。以豆科植物任豆(Zenia insignis)幼苗为试验材料,盆栽条件下,选取喀斯特优势菌种-摩西球囊霉(Funneliformis mosseae)、根内球囊霉(Rhizophagus intraradices),2种菌根真菌混合菌剂进行接种,培养180 d,研究贫瘠喀斯特土壤生境和养分较高的滇柏林下土壤生境下AMF对任豆生长影响。结果表明:摩西球囊霉、根内球囊霉和混合接种均能侵染任豆根系,幼嫩根系更易侵染,木质化根系侵染率下降。接种摩西球囊霉,贫瘠喀斯特土壤生境下,株高、地径、地上生物量、地下生物量和总生物量分别提高68.92%、56.18%、83.90%、42.20%和67.34%;养分较高的滇柏林下喀斯特土壤生境下,株高、地上生物量、地下生物量和总生物量分别提高48.05%、6.77%、7.92%和8.89%;根内球囊霉处理接种效应低于摩西球囊霉和混合接种处理,对生物量增长为负效应,混合接种处理接种效应介于单接种之间,摩西球囊霉接种效果优于根内球囊霉和混合接种。摩西球囊霉在贫瘠喀斯特土壤生境下发挥的促生效应优于养分较高的喀斯特土壤,可作为喀斯特侵蚀区植被恢复菌根真菌干扰途径的优势菌种,混合接种作为接种剂具有单接种兼容效应。  相似文献   

7.
Mycorrhizal fungal identity and diversity relaxes plant-plant competition   总被引:1,自引:0,他引:1  
There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF diversity can act as insurance to sustain plant productivity under changing environmental conditions.  相似文献   

8.
Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.  相似文献   

9.
Phillips RP  Fahey TJ 《Ecology》2006,87(5):1302-1313
Previous research on the effects of tree species on soil processes has focused primarily on the role of leaf litter inputs. We quantified the extent to which arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree species influence soil microbial activity and nutrient availability through rhizosphere effects. Rhizosphere soil, bulk soil, and fine roots were collected from 12 monospecifc plots (six AM and six ECM tree species) planted on a common soil at the Turkey Hill Plantations in Dryden, New York. Rhizosphere effects were estimated by the percentage difference between rhizosphere and bulk soil samples for several assays. Rhizosphere effects on soil microbes and their activities were significant for ECM species but in only a few cases for AM species. In AM tree species, microbial biomass, net N mineralization, and phosphatase enzyme activity in the rhizosphere were 10-12% greater than in bulk soil. In ECM tree species, rhizosphere effects for microbial biomass, C mineralization rates, net N mineralization, and phosphatase activity were 25-30% greater than bulk soil, and significantly greater than AM rhizosphere effects. The magnitude of rhizosphere effects was negatively correlated with the degree of mycorrhizal colonization in AM tree species (r = -0.83) and with fine root biomass (r = -0.88) in ECM tree species, suggesting that different factors influence rhizosphere effects in tree species forming different mycorrhizal associations. Rhizosphere effects on net N mineralization and phosphatase activity were also much greater in soils with pH < 4.3 for both AM and ECM tree species, suggesting that soil pH and its relation to nutrient availability may also influence the magnitude of rhizosphere effects. Our results support the idea that tree roots stimulate nutrient availability in the rhizosphere, and that systematic differences between AM and ECM may result in distinctive rhizosphere effects for C, N, and P cycling between AM and ECM tree species.  相似文献   

10.
A greenhouse pot experiment was conducted to investigate the effects of the colonization of arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the growth and metal uptake of three leguminous plants (Sesbania rostrata, Sesbania cannabina, Medicago sativa) grown in multi-metal contaminated soil. AMF colonization increased the growth of the legumes, indicating that AMF colonization increased the plant’s resistance to heavy metals. It also significantly stimulated the formation of root nodules and increased the N and P uptake of all of the tested leguminous plants, which might be one of the tolerance mechanisms conferred by AMF. Compared with the control, colonization by G. mosseae decreased the concentration of metals, such as Cu, in the shoots of the three legumes, indicating that the decreased heavy metals uptake and growth dilution were induced by AMF treatment, thereby reducing the heavy metal toxicity to the plants. The root/shoot ratios of Cu in the three legumes and Zn in M. sativa were significantly increased (P < 0.05) with AMF colonization, indicating that heavy metals were immobilized by the mycorrhiza and the heavy metal translocations to the shoot were decreased.  相似文献   

11.
In a multifactorial pot experiment, maize (Zea mays L.) with or without inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG167 was grown in a sterilized soil spiked with three levels of zinc (0, 300 and 900 mg Zn kg−1 soil) and three levels of cadmium (0, 25 and 100 mg Cd kg−1 soil). At harvest after 8 weeks of growth, the proportion of root length of inoculated plants colonized decreased with increasing Zn or Cd additon, and was 56% in the absence of both metals and was reduced significantly to 27% in the presence of the higher levels of both metals. Mycorrhizal plants had higher biomass than non-mycorrhizal controls except at the highest soil level of Cd. Cadmium had more pronounced effects on plant biomass than did Zn at the levels studied and the two metals showed a significant interaction. The data suggest that mycorrhizal inoculation increased plant growth with enchancement of P nutrition, perhaps increasing plant tolerance to Zn and Cd by a dilution effect. AM inoculation also led to higher soil solution pH after harvest, possibly reducing the availability of the metals for plant uptake, and lowered the concentrations of soluble Zn and Cd in the soil solution, perhaps by adsorption onto the extrametrical mycelium.  相似文献   

12.
White clover potted experiments were performed to investigate the effects of seven indigenous arbuscular mycorrhizal fungi (AMF) communities isolated from different test plots subjected to long-term fertilisation on soil enzyme activities, number of soil bacteria and fungi. The results showed that the inoculation of arbuscular mycorrhizal fungi communities increased the mycorrhizal infection rate of the plants and promoted the growth of plants. The Mnp treatment was most effective. The shoot biomass, root biomass, potassium and nitrogen uptake of the white clover in Mnp treatment group were increased by 61.54%, 84.00%, 62.50% and 46.71% respectively, compared with those in non-inoculation treatment. The inoculation of AMF communities had little effect on the number of bacteria in the soil, but significantly increased the number of soil fungi. Mnk treatment group had the highest number of fungi in the soil, which was 9.91 times that of the non-inoculation treatment group. The catalase and dehydrogenase activities were both significantly improved in Mnp treatment by 28.12% and 205.38% respectively, compared with those of the control treatment (-M). The urease, invertase and cellulase activities reached the highest levels in the Mck treatment; they were increased by 142.79%, 41.17% and 77.62% respectively, compared with those of the control treatment. Pearson correlation analysis showed that the soil enzyme activity was not correlated with the mycorrhizal infection rate, but correlated with the spore number of the AMF community. The impact of AMF community on soil quality is important for us to understand the function of the ecosystems. Relevant study provides important guidance for maintaining the balance of the soil-plant system and the development of sustainable agriculture.  相似文献   

13.
A greenhouse study was conducted as a completely randomised design in a factorial arrangement to assess how inoculation of AMF (arbuscular mycorrhizal fungus) and application of EDTA (ethylenediaminetetracetic acid) as biological and chemical amendments can affect the Ni (nickel) phytoremediation in Ni-polluted soils using sunflower plant. The results showed that the inoculation of AMF increased root colonisation while applying EDTA and high level of Ni decreased it. Microbial incubation has a positive effect on both shoot and root dry yields; however, co-application of Ni and EDTA demoted the growth rate. Shoot nutrients uptake of plants decreased as Ni levels increased. In inoculated plants, shoot uptake of Zn, Fe and Mn was higher in all Ni levels than non-inoculated plants. Ni uptake in plant shoots and roots increased with applying both AMF and EDTA. However, the mean Ni concentration and uptake in inoculated plants along with applying EDTA are higher in sunflower shoots than in roots. As Ni levels increased, Ni extraction and uptake efficiencies increased; it can be concluded co-application of EDTA and AMF was effective in increasing phytoextraction potential of sunflower plants in Ni-contaminated sites. This study highlights that AMF could be suitable for cleaning Ni-polluted areas and it could significantly contribute to phytoremediation technology.  相似文献   

14.
丛枝菌根真菌接种对兔眼蓝莓在华南地区生长的影响   总被引:1,自引:0,他引:1  
在盆栽条件下,利用根际接种丛枝菌根真菌(地表球囊霉Glomus versiforme和摩西球囊霉Glomus mosseae)的方法对兔眼蓝莓(Vaccinium ashei)在华南地区生长的影响进行了研究。结果表明:与未接种对照相比,接种的2个真菌均可不同程度地侵染兔眼蓝莓根系,增加根系总长、根表面积、植株地上部分鲜质量、新枝长度、主枝数和主枝长度等,促进兔眼蓝莓生长。地表球囊霉接种侵染率高,对兔眼蓝莓生长促进效果更好。接种AMF还能提高根际土壤w(P2O5)。接种丛枝菌根真菌有利于在华南地区引种栽培兔眼蓝莓。  相似文献   

15.
在滨海盐渍土中分别混加质量分数为0%、20%、40%和60%的污泥堆肥,作为盆栽基质,研究摩西球囊霉(Glomusmosseae)和根内球囊霉(Glomus intraradices)2种AM真菌对稗草(Echinochloa crusgalli)生长及其吸收Cu、Pb的影响,分别以不接种AM真菌的处理为各自的对照。结果显示:添加污泥堆肥处理中稗草接种苗菌根侵染率均显著高于纯盐泽土处理。同时,随着盐渍土中污泥堆肥含量增加稗草生物量上升,其中在含有40%和60%污泥堆肥处理中接种AM真菌稗草的地上及地下部生物量显著高于未接种苗。接种AM真菌显著提高了稗草Cu、Pb富集总量;接种AM真菌显著提高了稗草地下部Cu富集量,却降低了地下部Pb累积量,提高了Pb向地上部的转运,增加了地上部Pb累积量。这些结果表明污泥堆肥中接种AM真菌可以促进稗草的生长和提高对重金属Cu、Pb的富集能力。  相似文献   

16.
Mangan SA  Herre EA  Bever JD 《Ecology》2010,91(9):2594-2603
A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.  相似文献   

17.
菌根真菌侵染对植物生物量累积的影响   总被引:2,自引:0,他引:2  
童琳  唐旭利  张静  张倩媚 《生态环境》2014,(9):1520-1525
为了从生态系统尺度探讨菌根资源与植物生物量累积的关系,调查了鼎湖山不同成熟度的三个森林群落主要优势树种的菌根侵染情况.综合分析各森林群落优势树种的个体数、生物量和菌根侵染率发现:1)菌根侵染率与径向生长速率相关,植物生长迅速的阶段菌根侵染率更高.中径级(胸径15-30 cm)的马尾松(Pinus massoniana)和锥(Castanopsis chinensis)的侵染率比小径级(胸径1-15 cm)个体的侵染率高,而大径级个体(胸径30 cm 以上)的侵染率略低于中径级个体的侵染率.木荷(Schima superba)则表现出侵染率随着胸径增大而增高的趋势.2)树种在群落内的侵染率越高,其对群落生物量的贡献率越大.如马尾松在马尾松林和混交林的侵染率分别为(77.30±18.02)%和(40.50±14.42)%,其对马尾松林群落生物量的贡献率达到87.43%,是对混交林生物量贡献率(17.51%)的5 倍.混交林和阔叶林的共有优势树种锥的侵染率和生物量贡献率也有存在相同规律.3)根系碳储量占群落总碳储量比例较高的群落其优势树种平均侵染率相对较高.马尾松林、混交林和季风常绿阔叶林中,根系碳储量占群落总碳储量的比例分别为55%、54%、42%,群落优势树种平均侵染率分别为(66.73±10.55)%、(46.97±27.28)%、(54.22±25.45)%,马尾松林的根系碳储量和平均侵染率均高于混交林和季风常绿阔叶林.以上结果表明,菌根真菌侵染对于植物个体生长速率以及群落水平的生物量累积具有-定的促进作用.  相似文献   

18.
以贵州花江喀斯特高原生态综合治理试验示范区内草本群落阶段的几种主要植物为材料,对其根际微生态环境进行了研究,包括根际土壤化学性质、土壤酶活性和VA菌根侵染率及AMF孢子密度。结果表明:VA菌根侵染率和根际土壤中AMF孢子密度存在极显著正相关,相关系数达到0.97;不同植物根际土壤的化学指标和土壤酶活性均表现出较强的根际效应,即R/S〉1;VA菌根侵染率与pH值存在显著负相关,与有效磷质量分数存在极显著正相关,与碱性磷酸酶存在显著正相关,说明VA菌根能够促进土壤中难溶态磷往有效磷方向转化;AMF对宿主植物的侵染能够在一定程度上改善根际微生态环境的营养状况。  相似文献   

19.
李欢  李晓林  向丹 《生态环境》2010,19(7):1569-1573
丛枝菌根真菌(Abuscular mycorrhizal fungi)能够影响植物生长及养分含量,从而影响凋落物的降解。采用根袋的方法研究了接种两种丛枝真菌Glomus mosseae和Glomus claroideum对羊草(Leymus chinensis)地上部及根系凋落物降解的影响。结果表明,随时间的延长,凋落物的重量逐渐减少,凋落物氮、磷含量均表现出先下降后逐渐升高的趋势。接种对地上部凋落物的养分含量及降解速度未产生显著性影响,但显著降低了根系氮磷含量及降解系数。接种Glomus mosseae和Glomus claroideum羊草根系氮、磷含量均显著低于CK;接种与未接种相比羊草根系k值显著降低;根系C:N未接种处理显著低于接种处理。说明丛枝菌根真菌可能间接影响草原生态系统中有机物质的分解和养分释放。  相似文献   

20.
A green house nursery study was conducted to assess the interaction between arbuscular mycorrhizal (AM) fungus, Glomus aggregatum and some plant growth promoting rhizomicrooganisms (PGPR's), Bacillus coagulans and Trichoderma harzianum, in soil and their consequent effect on growth, nutrition and content of secondary metabolities of Solanum viarum seedlings. Triple inoculation of G. aggregatum+B. coagulans+T. harzainum with Solanum viarum in a green house nursery study resulted in maximum plant biomass (plant height 105 cm and plant dry weight 12.17 g), P, Fe, Zn, Cu and Mn and secondary metabolities [total phenols (129.6 microg g(-1) f.wt.), orthodihydroxy phenols (90.6 microg g(-1) f.wt.), flavonoids (3.94 microg g(-1) f.wt.), alkaloids (5.05 microg g(-1) f.wt.), saponins (5.05 microg g(-1) f.wt.) and tannins (0.324 microg g(-1) f.wt.)] of S. viarum seedlings. The mycorrhizal root colonization and spore numbers in the root zone soil of the inoculated plants increased. The enzyme activity namely acid phosphatase (53.44 microg PNP g(-1) soil), alkaline phosphatase (40.95 microg PNP g(-1) soil) and dehydrogenase (475.5 microg PNP g(-1) soil) and total population of B. coagulans (12.5x10(4) g(-1)) and T. harzianum (12.4 x 10(4) g(-1)), in the root zone soil was found high in the triple inoculation with G. aggregatum+B. coagulans+T. harzianum that proved to be the best microbial consortium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号