首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Little attention has been paid to fragmentation effects on organisms living in open habitats in which species may have high mobility and generalized habitat use. We investigated landscape effects on 23 farmland bird species breeding in 72 semi-natural dry pastures distributed equally among three landscape types (agricultural-dominated, mosaic, and forest-dominated) in southcentral Sweden. There were generally higher local abundances of farmland birds in pastures located in agricultural-dominated and mosaic landscapes than in forest-dominated landscapes. Species feeding on a mixed diet as well as resident species and temperate migrants were most numerous in pastures located in agricultural-dominated landscapes and least numerous in forest-dominated landscapes. While controlling for the effects of local pasture area and vegetation structure, we found that the local abundance of 18 ( 78%) farmland bird species was significantly associated with the composition and structure of the surrounding landscape. The landscape distance that explained the largest part of local variation in abundance varied among species according to the size of their breeding territories or foraging home ranges. Our results suggest that habitat use of farmland birds breeding in pastures is affected both by suitable foraging habitats in the surrounding landscape and by nest sites within local pastures. Despite the generally higher abundances of farmland birds in pastures located in agricultural-dominated landscapes, most species of European and Swedish conservation concern had higher abundance in pastures located in more forested landscapes. Thus, the rapid loss of semi-natural dry pastures in forest-dominated landscapes is a serious threat to the future of these species in Sweden.  相似文献   

2.
Agricultural environments are critical to the conservation of biota throughout the world. Efforts to identify key influences on the conservation status of fauna in such environments have taken complementary approaches. Many studies have focused on the role of remnant or seminatural vegetation and emphasized the influence on biota of spatial patterns in the landscape. Others have recognized that many species use diverse "countryside" elements within farmland, and emphasize the benefits of landscape heterogeneity for conservation. Here, we investigated the effect of independent measures of both the spatial pattern (extent and configuration) and heterogeneity of elements (i.e., land uses/vegetation types) on bird occurrence in farm-scale agricultural mosaics in southeastern Australia. Birds were sampled in all types of elements in 27 mosaics (each 1 x 1 km) selected to incorporate variation in cover of native vegetation and the number of different element types in the mosaic. We used an information-theoretic approach to identify the mosaic properties that most strongly influenced bird species richness. Subgroups of birds based on habitat requirements responded most strongly to the extent of preferred elements in mosaics. Woodland birds were richer in mosaics with higher cover of native vegetation while open-tolerant species responded to the extent of scattered trees. In contrast, for total species richness, mosaic heterogeneity (richness of element types) and landscape context (cover of native vegetation in surrounding area) had the greatest influence. These results showed that up to 76% of landscape-level variation in richness of bird groups is attributable to mosaic properties directly amenable to management by landowners. Key implications include (1) conservation goals for farm landscapes must be carefully defined because the richness of different faunal components is influenced by different mosaic properties; (2) the extent of native vegetation is a critical influence in agricultural environments because it drives the farm-scale richness of woodland birds and has a broader context effect on total bird richness in mosaics; (3) land-use practices that enhance the heterogeneity of farmland mosaics are beneficial for native birds; and (4) the cumulative effect of even small elements in farm mosaics contribute to the structural properties of entire landscapes.  相似文献   

3.
Assessing Risks to Biodiversity from Future Landscape Change   总被引:11,自引:0,他引:11  
We examined the impacts of possible future land development patterns on the biodiversity of a landscape. Our landscape data included a remote sensing derived map of the current habitat of the study area and six maps of future habitat distributions resulting from different land development scenarios. Our species data included lists of all bird, mammal, reptile, and amphibian species in the study area, their habitat associations, and area requirements for each. We estimated the area requirements using home ranges, sampled population densities, or genetic area requirements that incorporate dispersal distances. Our measures of biodiversity were species richness and habitat abundance. We calculated habitat abundance in two ways. First, we computed the total habitat area for each species in each landscape. Second, we calculated the number of habitat units for each species in each landscape by dividing the size of each habitat patch in the landscape by the area requirement and summing over all patches. Species richness was based on presence of habitat. Species became extinct in the landscape if they had no habitat area or no habitat units, respectively. We then computed ratios of habitat abundance in each future landscape to habitat abundance in the present for each species. We also computed the ratio of future to present species richness. We then calculated summary statistics across all species. Species richness changed little from present to future. There were distinctly greater risks to habitat abundance in landscapes that extrapolated from present trends or zoning patterns, however, as opposed to landscapes in which land development activities followed more constrained patterns. These results were stable when tested using Monte Carlo simulations and sensitivity tests on the area requirements. We conclude that this methodology can begin to discriminate the effects of potential changes in land development on vertebrate biodiversity.  相似文献   

4.
Abstract:  For several decades, many grassland bird species have been declining in abundance throughout the Midwest and Great Plains regions of the United States, possibly due to loss of natural grassland habitat and increasing urbanization. I used 20 years of data from the North American Breeding Bird Survey to identify increasing, decreasing, and stable populations of 36 grassland-nesting bird species. I characterized the immediate landscape (circle with radius = 30 km) surrounding each population based on data from the National Resources Inventory. For each landscape, I calculated the proportion of eight different land-cover types: restored grassland, rangeland, cultivated cropland, pasture, noncultivated cropland, forest, urban land, and water. Using a null model, I compared landscape composition of increasing, decreasing, and stable populations. As predicted on the basis of the habitat preferences of grassland birds, increasing populations inhabited landscapes that contained significantly more restored grassland and rangeland but significantly less forest land and urban land than landscapes inhabited by decreasing populations. There was no significant difference in the proportion of cropland within the landscapes of increasing and decreasing populations, although cropland composed a large proportion (>30%) of many landscapes. In contrast, restored grassland typically composed a very small proportion (<3.5%) of total land cover, yet it was significantly more common in the landscapes of increasing than decreasing populations. These results suggest that grassland birds may benefit from government initiatives, such as the Conservation Reserve Program, that promote the restoration of grassland at a landscape scale.  相似文献   

5.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

6.
In this paper, we analyzeatabases on birds and insects to assess patterns of functional diversity in human-dominated landscapes in the tropics. A perspective from developed landscapes is essential for understanding remnant natural ecosystems, because most species experience their surroundings at spatial scales beyond the plot level, and spillover between natural and managed ecosystems is common. Agricultural bird species have greater habitat and diet breadth than forest species. Based on a global data base, bird assemblages in tropical agroforest ecosystems were composed of disproportionately more frugivorous and nectarivorous, but fewer insectivorous bird species compared with forest. Similarly, insect predators of plant-feeding arthropods were more diverse in Ecuadorian agroforest and forest compared with rice and pasture, while, in Indonesia, bee diversity was also higher in forested habitats. Hence, diversity of insectivorous birds and insect predators as well as bee pollinators declined with agricultural transformation. In contrast, with increasing agricultural intensification, avian pollinators and seed dispersers initially increase then decrease in proportion. It is well established that the proximity of agricultural habitats to forests has a strong influence on the functional diversity of agroecosystems. Community similarity is higher among agricultural systems than in natural habitats and higher in simple than in complex landscapes for both birds and insects, so natural communities, low-intensity agriculture, and heterogeneous landscapes appear to be critical in the preservation of beta diversity. We require a better understanding of the relative role of landscape composition and the spatial configuration of landscape elements in affecting spillover of functionally important species across managed and natural habitats. This is important for data-based management of tropical human-dominated landscapes sustaining the capacity of communities to reorganize after disturbance and to ensure ecological functioning.  相似文献   

7.
Importance of Reserve Size and Landscape Context to Urban Bird Conservation   总被引:15,自引:1,他引:15  
Abstract:  We tested whether reserve size, landscape surrounding the reserve, and their interaction affect forest songbirds in the metropolitan area of Seattle, Washington (U.S.A.), by studying 29 reserves of varying size (small, medium, large) and surrounding urbanization intensity (urban, suburban, exurban). Larger reserves contained richer and less even bird communities than smaller reserves. These size effects disappeared when we removed the positive correlation of shrub diversity with reserve size, suggesting that greater habitat diversity in large reserves supported additional species, some of which were rare. Standardizing the number of individuals detected among all reserve size classes reversed the effect of size on richness in exurban landscapes and reduced the magnitude of the effect in suburban or urban landscapes. The latter change suggested that richness increased with reserve size in most landscapes because larger areas also supported larger samples from the regional bird species pool. Most bird species associated with native forest habitat (native forest species) and with human activity (synanthropic species) were present in reserves larger than 42 ha and surrounded by >40% urban land cover, respectively. Thus, we recommend these thresholds as means for conserving the composition of native bird communities in this mostly forested region. Native forest species were least abundant and synanthropic species most abundant in urban landscapes, where exotic ground and shrub vegetation was most common. Therefore, control of exotic vegetation may benefit native songbird populations. Bird nests in shrubs were most dense in medium (suburban) and large reserves (urban) and tended to be most successful in medium (suburban) and large reserves (exurban), potentially supplying another mechanism by which reserve size increased retention of native forest species.  相似文献   

8.
Widespread loss of primary habitat in the tropics has led to increased interest in production landscapes for biodiversity conservation. In the Western Ghats biodiversity hotspot in India, shade coffee plantations are located in close proximity to sites of high conservation value: protected and unprotected forests. Coffee is grown here under a tree canopy that may be dominated by native tree species or by nonnative species, particularly silver oak (Grevillea robusta). We investigated the influence of properties at the local scale and the landscape scale in determining bird communities in coffee plantations, with particular emphasis on species of conservation priority. We used systematic point counts in 11 coffee plantation sites and analyzed data in a randomized linear modeling framework that addressed spatial autocorrelation. Greater proportion of silver oak at the local scale and distance to contiguous forests at the landscape scale were implicated as factors most strongly driving declines in bird species richness and abundance, while increased basal area of native tree species, a local-scale variable, was frequently related to increased bird species richness and abundance. The influence of local-scale variables increased at greater distances from the forest. Distance to forests emerged as the strongest predictor of declines in restricted-range species, with 92% reduction in the abundance of two commonly encountered restricted-range species (Pompadour Green Pigeon and Yellow-browed Bulbul) and a 43% reduction in richness of bird species restricted to Indian hill forests within 8 km of forests. Increase in proportion of silver oak from 33% to 55% was associated with 91% reduction in the abundance of one commonly encountered restricted-range species (Crimson-fronted Barbet). One conservation strategy is providing incentives to grow coffee in a biodiversity-friendly manner. One implication of our study is that plantations located at varying distances to the forest cannot be compared fairly for biodiversity friendliness by existing certification methodology. Another is that conservation of existing forests at the landscape scale is essential for maintaining higher biodiversity in coffee plantations. Incentive schemes that promote conservation of remnant forests at the landscape scale and biodiversity-friendly practices locally and that relate to coffee communities as a whole rather than individual planters are likely to be more effective.  相似文献   

9.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

10.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

11.
DeGasperis BG  Motzkin G 《Ecology》2007,88(12):3115-3125
Attempts to determine characteristics that render habitats invasible to nonnative species have met with limited success. This may be because most studies focus on modern habitat conditions and do not consider invasibility in the context of a historically dynamic landscape in which both the abundance of a species and the invasibility of a site may change. We surveyed 159 currently forested sites for the occurrence and abundance of Berberis thunbergii (Japanese barberry), an invasive, nonnative shrub in forests of the northeastern United States, relative to modern environmental conditions, contemporary logging activity, and two periods of historical land use. Berberis thunbergii occurred more frequently and was more abundant in post-agricultural forests than in continuously wooded sites. This relationship was stronger for agricultural sites that were abandoned and reforested after B. thunbergii was introduced to the region than for sites that reforested prior to B. thunbergii introduction. In contrast, recent forest harvesting did not influence the occurrence or abundance of B. thunbergii. Modern soil fertility explained a significant portion of the variation in B. thunbergii occurrence, whereas site history considerably improved predictions of population density and helped evaluate potential invasion mechanisms. While land-use history covaries with soil fertility and distance to putative seed sources, the strong relationship between modern abundance patterns and historical agriculture suggests that B. thunbergii colonized recently abandoned agricultural lands in the early 20th century and then persisted and spread locally during subsequent reforestation. Our results indicate that interpretations of both native community composition and modern plant invasions must consider the importance of historical landscape changes and the timing of species introduction along with current environmental conditions.  相似文献   

12.
Abstract:  Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants—a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.  相似文献   

13.
Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape-scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner-city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity-nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine-fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.  相似文献   

14.
Invasive species are a global threat to biodiversity and the functioning of natural ecosystems. Here, we report on a two-year experiment aimed at elucidating the combined and relative effects of three key controls on plant invasions: propagule supply, soil nitrogen (N) availability, and herbivory by native insects. We focus on the exotic species Lespedeza cuneata, a Rank 1 invasive species. Propagule supply and soil N-availability interacted to control the density and foliar cover of L. cuneata. In low N plots, density and foliar cover of L. cuneata were higher in the propagule addition plots than in the plots to which propagules were not added. Surprisingly, this interaction was significant only when the abundance of herbivores was experimentally reduced. This experiment provides evidence that native insect herbivores mediate the interactive effects of propagule supply and resources on invasion by a widespread invasive plant species.  相似文献   

15.
Many studies have examined differences in avian community composition between urban and rural habitats, but few, if any, have looked at nesting success of urban shrubland birds in a replicated fashion while controlling for habitat. We tested factors affecting nest survival, parasitism by the Brown-headed Cowbird (Molothrus ater), and species abundance in shrubland habitat in rural and urban landscapes. We found no support for our hypothesis that nest survival was lower in urban landscapes, but strong support for the hypothesis that survival increased with nest height. We found strong support for our hypothesis that cowbird parasitism was greater in urban than rural landscapes; parasitism in urban sites was at least twice that of rural sites. We found strong support for an urban landscape effect on abundance for several species; Northern Cardinal (Cardinalis cardinalis) and Brown-headed Cowbirds were more abundant in urban landscapes, whereas Field Sparrow (Spizella pusilla) and Blue-winged Warbler (Vermivora pinus) were more abundant in rural sites. There was support for lower abundances of Blue-gray Gnatcatcher (Polioptila caerulea) and Indigo Bunting (Passerina cyanea) with increased housing density. For six other species, edge and trail density or vegetation parameters best explained abundance. Lower abundances and greater parasitism in habitat patches in urban landscapes are evidence that, for some species, these urban landscapes do not fulfill the same role as comparable habitats in rural landscapes. Regional bird conservation planning and local habitat management in urban landscapes may need to consider these effects in efforts to sustain bird populations at regional and local scales.  相似文献   

16.
Abstract: The lack of long‐term baseline data restricts the ability to measure changes in biological diversity directly and to determine its cause. This hampers conservation efforts and limits testing of basic tenets of ecology and conservation biology. We used a historical baseline survey to track shifts in the abundance and distribution of 296 native understory species across 82 sites over 55 years in the fragmented forests of southern Wisconsin. We resurveyed stands first surveyed in the early 1950s to evaluate the influence of patch size and surrounding land cover on shifts in native plant richness and heterogeneity and to evaluate changes in the relative importance of local site conditions versus the surrounding landscape context as drivers of community composition and structure. Larger forests and those with more surrounding forest cover lost fewer species, were more likely to recruit new species, and had lower rates of homogenization than smaller forests in more fragmented landscapes. Nearby urbanization further reduced both alpha and beta understory diversity. Similarly, understory composition depended strongly on local site conditions in the original survey but only weakly reflected the surrounding landscape composition. By 2005, however, the relative importance of these factors had reversed such that the surrounding landscape structure is now a much better predictor of understory composition than are local site conditions. Collectively, these results strongly support the idea that larger intact habitat patches and landscapes better sustain native species diversity and demonstrate that humans play an increasingly important role in driving patterns of native species diversity and community composition.  相似文献   

17.
Globally, anthropogenic land-cover change has been dramatic over the last few centuries and is frequently invoked as a major cause of wildlife population declines. Baseline data currently used to assess population trends, however, began well after major changes to the landscape. In the United States and Canada, breeding bird population trends are assessed by the North American Breeding Bird Survey, which began in the 1960s. Estimates of distribution and abundance prior to major habitat alteration would add historical perspective to contemporary trends and allow for historically based conservation targets. We used a hindcasting framework to estimate change in distribution and abundance of 7 bird species in the Willamette Valley, Oregon (United States). After reconciling classification schemes of current and 1850s reconstructed land cover, we used multiscale species distribution models and hierarchical distance sampling models to predict spatially explicit densities in the modern and historical landscapes. We estimated that since the 1850s, White-breasted Nuthatch (Sitta carolinensis) and Western Meadowlark (Sturnella neglecta) populations, 2 species sensitive to fragmentation of oak woodlands and grasslands, declined by 93% and 97%, respectively. Five other species we estimated nearly stable or increasing populations, despite steep regional declines since the 1960s. Based on these estimates, we developed historically based conservation targets for amount of habitat, population, and density for each species. Hindcasted reconstructions provide historical perspective for assessing contemporary trends and allow for historically based conservation targets that can inform current management.  相似文献   

18.
Abstract: Habitat loss and fragmentation in forested landscapes often negatively affect animal abundance; however, whether these factors also affect fitness is not well known. We hypothesized that observed decreases in bird occurrence and abundance in landscapes with harvested forests are associated with reduced apparent survival of adults. We defined apparent survival as an estimate of survival that accounts for an imperfect resighting probability, but not permanent emigration (i.e., dispersal). We examined the association between spatially extensive habitat loss and apparent survival of males of 2 Neotropical migrant species, Blackburnian Warbler (Dendroica fusca) and Black‐Throated Green Warbler (D. virens), over 7 years in the Greater Fundy Ecosystem, New Brunswick, Canada. We estimated apparent survival among and within breeding seasons. We quantified amount of habitat in the context of individual species. In this landscape, boundaries between land‐cover types are gradual rather than clearly identifiable and abrupt. Estimated apparent within‐season survival of both species decreased as a function of amount of habitat within a 2000‐m radius; survival was approximately 12 times (95% CI 3.43–14) greater in landscapes with 85% habitat than in landscapes with 10% habitat. Apparent annual survival also decreased as a function of amount of habitat within a 100‐m radius. Over the range of habitat amount, apparent annual survival decreased 15% (95% CI 7–29%) as the amount of habitat decreased. Our results suggest that reduced species occurrence in landscapes with low proportions of habitat is due partly to lower apparent survival at these sites. This mechanism operates both directly (i.e., via effects on mortality or dispersal during breeding) and possibly through indirect effects during the nonbreeding season. Habitat loss was associated not only with a lower number of individuals, but also with lower survival of those individuals.  相似文献   

19.
Brandt AJ  Seabloom EW 《Ecology》2012,93(6):1451-1462
The effects of exotic species invasions on biodiversity vary with spatial scale, and documentation of local-scale changes in biodiversity following invasion is generally lacking. Coupling long-term observations of local community dynamics with experiments to determine the role played by exotic species in recruitment limitation of native species would inform both our understanding of exotic impacts on natives at local scales and regional-scale management efforts to promote native persistence. We used field experimentation to quantify propagule and establishment limitation in a suite of native annual forbs in a California reserve, and compared these findings to species abundance trends within the same sites over the past 48 years. Observations at 11 paired sites (inside and outside the reserve) indicated that exotic annual plants have continued to increase in abundance over the past 48 years. This trend suggests the system has not reached equilibrium > 250 years after exotic species began to spread, and 70 years after livestock grazing ceased within the reserve. Long-term monitoring observations also indicated that six native annual forb species went extinct from more local populations than were colonized. To determine the potential role of exotic species in these native plant declines, we added seed of these species into plots adjacent to monitoring sites where plant litter and live grass competition were removed. Experimental results suggest both propagule and establishment limitation have contributed to local declines observed for these native forbs. Recruitment was highest at sites that had current or historical occurrences of the seeded species, and in plots where litter was removed. Grazing history (i.e., location within or outside the reserve) interacted with exotic competition removal, such that removal of live grass competition increased recruitment in more recently grazed sites. Abundance of forbs was positively related to recruitment, while abundance of exotic forbs was negatively related. Thus, exotic competition is likely only one factor contributing to local declines of native species in invaded ecosystems, with a combination of propagule limitation, site quality, and land use history also playing important and interactive roles in native plant recruitment.  相似文献   

20.
A multi-scale examination of stopover habitat use by birds   总被引:1,自引:0,他引:1  
Buler JJ  Moore FR  Woltmann S 《Ecology》2007,88(7):1789-1802
Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 m to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号