首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4(+), NO3(-), and NO2(-) nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4(+)-N in a 1-day sample, which continued until 90 days. Some declines in NO3(-)N were found from 15 to 60 days. Along with this decline, significant increases in NO2(-)N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3(-)N and the decline in NH4+NO2(-)-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4(+)-N, NO2(-)-N and nitrate reductase activity and some adverse effects on NO3(-)N between 15 and 90 days.  相似文献   

2.

Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4 +, NO3 ?, and NO2 ? nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4 +-N in a 1-day sample, which continued until 90 days. Some declines in NO3 ?N were found from 15 to 60 days. Along with this decline, significant increases in NO2 ?N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3 ?N and the decline in NH4 +NO2 ?-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4 +-N, NO2 ?-N and nitrate reductase activity and some adverse effects on NO3 ?N between 15 and 90 days.  相似文献   

3.
Bacterial, azotobacter, actinomycetes, and fungal populations were determined in groundnut (Arachis hypogaea L.) fields between July and November for three consecutive years (1997-1999) after insecticide treatments. Diazinon was applied for both seed and soil treatments. However, imidacloprid and lindane were used for seed treatments. An average half-life (t1/2) of diazinon in seed- and soil-treated fields was found to be 29.32 and 34.87 days, respectively. Its residues were found for 60 days in both cases. In diazinon seed treatment, an increase in azotobacter, fungi, and actinomycetes populations was observed in samples from the 15th and 30th days, and this trend continued until crop harvest. However, the bacterial population had not been affected by this treatment. The diazinon soil treatment had indicated some significant adverse effects on fungi and actinomycetes population, which recovered after 30 days. The population of bacteria and azotobacter increased significantly in this treatment. The residues of imidacloprid and lindane were found for 90 and 120 days with an average half-life of 40.9 and 53.3 days, respectively. Imidacloprid had no significant effect on fungi and actinomycetes populations up to 15 days, and between 15 to 60 days some adverse effects were indicated. However, some significant increases in bacterial and azotobacter population were observed. Lindane had no effect on bacterial and fungal population. However, its adverse effects were observed in actinomycetes and azotobacter populations between 30 to 60 days.  相似文献   

4.
Pandey S  Singh DK 《Chemosphere》2006,63(5):869-880
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2 pyridyl phosphorothioate) 20 EC and Quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) 25 EC, were applied in groundnut (Arachis hypogaea L.) field as seed treatment at 25 ml/kg and soil treatment at 4 l/ha in 1998 and 1999. The residues of these insecticides were monitored during the entire crop season and their effect on the soil enzymes dehydrogenase, phosphomonoesterase and arginine deaminase were studied. Ninety nine percent of chlorpyrifos residues were dissipated within 60 days from seed treated soil and 98% dissipation was observed in soil treated field for the same days. Its half lives in seed treated soil were 8 days and 7 days and in soil treated field were 9.2 days in and 7.5 days in 1998 and 1999 respectively. Dissipation of quinalphos in comparison to chlorpyrifos was slow both in seed treated and soil treated field. Eighty seven percentage to 92% dissipation of quinalphos residues were observed from seed treated soil and 98% residues were dissipated from soil treated field within 75 days. Its half lives in seed treated soil were 20 days and 18 days and in soil treated field, its half lives were 13 days and 17 days 1998 and 1999 respectively. Inhibition in dehydrogenase activity followed by recovery was observed both in seed and soil treatments with chlorpyrifos. An inhibition of 17.2% was estimated after 60 days of seed treatment in comparison to control. Dehydrogenase activity was significantly reduced to 63% after 15 days of quinalphos seed treatment in comparison to control in 1998. Similar trends were observed in 1999. A significant inhibition in dehydrogenase activity was observed after soil treatment both in 1998 and 1999. Phosphomonoesterase activities were significantly inhibited upto 25.2% as compared to the control, on the 15th day of chlorpyrifos seed treatment in 1998 and similarly, after one day of treatment in 1999. Quinalphos inhibited the phosphomonoesterase activity till the end of the experimental period in the soil treated fields, whereas recovered within 30-60 days of treatment in the seed treated fields. Arginine deaminase activity was significantly stimulated within one day after chlorpyrifos seed and soil treatments in both years. The activity was almost threefold higher on the 30th and the 15th day of soil treatment in 1998 and 1999, respectively. A temporary inhibition of arginine deaminase activity was observed after quinalphos treatment. It was observed that in most of cases insecticides have temporary inhibitory effect on soil enzymes. However, inhibition was smaller in seed treated soil than in direct soil treatment.  相似文献   

5.
Imidacloprid was applied as seed treatment (Gaucho 70 WS, 5 and 10 g ai kg(-1) seed) and foliar spray (Confidor 200 SL, 20 and 40 g ai ha(-1)) at 50% pod formation stage on mustard (Brassica campestris Linn.) to control mustard aphid, Lipaphis erysimi Kalt. It was detectable upto 82 and 96 days in plants after sowing from lower and higher doses of seed treatment. However, it dissipated faster and became nondetectable after 7 and 15 days of foliar treatments from lower and higher rates of application, respectively. The dissipation models yielded the rate constants of 0.0209 and 0.0230 and 0.0736 and 0.0779 day(-1) from seed and foliar treatment. The corresponding half-lives of 14.40 and 13.07 and 4.09 and 3.86 days were recorded. This suggested that the dissipation was independent of initial doses and followed a first order rate kinetics. The projected TMRC of imidacloprid from seed (0.136 and 0.225 mg person(-1) day(-1)) and foliar (0.069 and 0.1497 mg person(-1) day(-1)) treatments were found lower than the MPI (3.135 mg person(-1) day(-1)). At harvest mustard grains did not contain imidacloprid residues. The absence of imidacloprid in 0-10 and 10-20 cm soil layers indicated no leaching of insecticide. Therefore, imidacloprid treatments could be taken as safe for crop protection, consumption of leaves and environmental contamination point of view.  相似文献   

6.
Abstract

The effects of low levels of diazinon treatment on four marker enzymes in rat heart and skeletal muscle have been investigated. Adult male Wistar rats were treated twice a week with a dose of 0.5 ml‐kg‐1day‐1 diazinon for 28 weeks. Diazinon treated rats gained significantly less weight than Sham‐treated controls. Typical differences in Succinate dehydrogenase (SDH), Lactate dehydrogenase (LDH), Phosphofructo kinase (PFK) and Hexokinase (HK) activities were observed between heart and skeletal muscles. Diazinon feeding had no effect on heart, soleus, gastrocnemius and plantaris SDH, LDH and PFK enzyme activities after 28 weeks. HK activity was significantly increased in sham‐control soieus and plantaris muscles after 28 weeks. Diazinon feeding inhibited HK activity in plantaris muscle after 28 weeks treatment These results demonstrate that chronic low levels of diazinon have little effect on the glycolytic and oxidative activity in heart and skeletal muscle.  相似文献   

7.
The effect of low levels of diazinon treatment on four marker enzymes in rat heart and skeletal muscle have been investigated. Adult male Wistar rats were treated twice a week with a dose of 0.5 ml X kg-1 X day-1 diazinon for 28 weeks. Diazinon treated rats gained significantly less weight than Sham-treated controls. Typical differences in Succinate dehydrogenase (SDH), Lactate dehydrogenase (LDH), Phosphofructo kinase (PFK) and Hexokinase (HK) activities were observed between heart and skeletal muscles. Diazinon feeding had no effect on heart, soleus, gastrocnemius and plantaris SDH, LDH and PFK enzyme activities after 28 weeks. HK activity was significantly increased in sham-control soleus and plantaris muscles after 28 weeks. Diazinon feeding inhibited HK activity in plantaris muscle after 28 weeks treatment. These results demonstrate that chronic low levels of diazinon have little effect on the glycolytic and oxidative activity in heart and skeletal muscle.  相似文献   

8.
The objectives of this study were to determine the persistence of phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O, O-diethyl phosphorodithioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) residues in fresh and baled alfalfa under field conditions. Plots of alfalfa were sprayed with each insecticide. Fresh alfalfa was sampled up to 20 days after treatment, and dried alfalfa was sampled up to 25 weeks after baling. Samples were analyzed for residues using high performance liquid chromatography (HPLC) equipped with a UV detector. The half-lives of diazinon and phosalone in fresh alfalfa were 1.8 and 3.3 days, respectively. In baled alfalfa the half-life of diazinon and phosalone were 2.8 and 16.7 weeks, respectively. No diazinon residues were detected in baled alfalfa, sampled after week 9, although the concentration of phosalone found at week 25 was 5.51 mg/kg.  相似文献   

9.
Menon P  Gopal M 《Chemosphere》2003,53(8):1023-1031
The dissipation of 14C carbaryl in undisturbed soil cores, and of quinalphos (25EC and 20AF) after seed and soil treatments, was investigated under field use conditions, in a semi-arid groundnut field. Residues were analyzed by TLC and HPLC and additionally by LSC for 14C carbaryl. The harvested seed kernels were also tested for the presence of insecticide residues. The movement of carbaryl was limited to 15 cm depth in the loamy sand of Jaipur and was detected till 120 days (DT50 of 14.93 days) after application. Bound residues and 1-naphthol had a DT50 of 11.45 and 13.68 days, respectively. Irrespective of the three types of soil samples investigated, the principal metabolite formed on seed and soil treatments with quinalphos, was 2-hydroxyquinoxaline. With seed treatment, a thiol metabolite of quinalphos was also detected. Higher yields of groundnut were realized with quinalphos treatments in comparison to those from control. Post-harvest, no pesticide residues were found in seeds.  相似文献   

10.

The objectives of this study were to determine the persistence of phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O, O-diethyl phosphorodithioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) residues in fresh and baled alfalfa under field conditions. Plots of alfalfa were sprayed with each insecticide. Fresh alfalfa was sampled up to 20 days after treatment, and dried alfalfa was sampled up to 25 weeks after baling. Samples were analyzed for residues using high performance liquid chromatography (HPLC) equipped with a UV detector. The half-lives of diazinon and phosalone in fresh alfalfa were 1.8 and 3.3 days, respectively. In baled alfalfa the half-life of diazinon and phosalone were 2.8 and 16.7 weeks, respectively. No diazinon residues were detected in baled alfalfa, sampled after week 9, although the concentration of phosalone found at week 25 was 5.51 mg/kg.  相似文献   

11.
The blood serum of cacao farmers and their domestic water sources were analyzed for insecticide residues in selected cacao growing communities of Southwestern Nigeria. The farmers were grouped into five exposure periods based on their years of involvement in insecticide application, viz, <5 years, 5-9 years, 10-14 years, 15-19 years and >20 years. The residue analyses revealed that 42 out of the 76 farmers had residues of diazinon, endosulfan, propoxur and lindane in their blood; and 47.6% out of these farmers belonged in the >20 years exposure duration period. About 34% of the farmers had diazinon with a mean concentration of 0.067 mg kg(-1), 29% endosulfan (mean=0.033 mg kg(-1)), 23% propoxur (mean=0.095 mg kg(-1)), and 17% lindane (mean=0.080 mg kg(-1)) in their blood. The residues of lindane, endosulfan and propoxur in all the exposure duration categories were found to be far below the no observable adverse effect level (NOAEL) while diazinon residues detected in the blood serum of the farmers in all the exposure duration categories exceeded the NOAEL of 0.02 mg kg(-1) for the insecticide. The study also revealed that the sources of drinking water had been contaminated with dazinon and propoxur in some of the farmers' localities; and the concentrations of the insecticides exceeded the acceptable daily intake (ADI). It is concluded that cacao farmers in Southwestern Nigeria may have been occupationally exposed due to insecticide application for mirid control in their cacao plantations; and the exposure at times is of such magnitude as to be hazardous to the farmers and their respective communities.  相似文献   

12.
The toxicity, accumulation, and elimination of diazinon were investigated for the european eel, Anguilla anguilla. The 24, 48, 72 and 96-h median lethal concentrations (LC50) were 0.16, 0.11, 0.09 and 0.08 mg/L, respectively. Fish exposed to sublethal concentration (0.042 mg/L) accumulated diazinon in liver and muscle tissues. Bioconcentration factors (BCF) of diazinon were 1850 in liver, and 775 in muscle over the 96-h exposure period. Upon removal from diazinon containing water the contaminated fish rapidly eliminated diazinon. The excretion rate constants of this insecticide were 0.108 h-1 for liver and 0.016 h-1 for muscle. Diazinon half-lives were 16.6 and 33.2 hours for liver and muscle, respectively.  相似文献   

13.
Pandey S  Singh DK 《Chemosphere》2004,55(2):197-205
Short-term inhibitory effect on the total bacterial population was observed after chlorpyrifos and quinalphos applications in the groundnut fields, which recovered within 60 days after seed treatment and by 45 days of soil treatment. The fungal population was significantly enhanced after chlorpyrifos treatment whereas quinalphos inhibited the fungal population during the initial days of treatment but no effect was observed after 60 days of treatment. The residues of chlorpyrifos and quinalphos in the treated soil were not persistent and their half-lives ranged from 7.0 to 9.2 days and 13.2 to 20.6 days, respectively.  相似文献   

14.
Environmental hazards resulting from land application of composted pesticide residue have not been rigorously evaluated. This study was conducted to examine the toxicity of a composted pesticide residue using earthworms (Eisenia foetida Savigny) as a microinvertebrate model in a soil bioassay system. Diazinon, which was used in these experiments as a test pesticide, was removed from simulated rinsate (wastewater) by sorption onto peat moss. Following the rinsate clean-up phase, diazinon-laden peat moss was placed into bioreactors and composted for either 30 or 60 days. Earthworms were then exposed to soil amended with the composted material. Mortality and symptomatic effects characteristic of acetylcholinesterase inhibition, including weight loss, reduced burying ability and curling, occurred in earthworms exposed to soil amended with either uncomposted or 30-day composted diazinon, but not in those exposed to soil amended with 60-day composted diazinon. The amount of solvent-extractable diazinon from compost was not directly related to acute earthworm toxicity based on the selected criteria. These results indicated a reduction in diazinon bioavailability during latter 30 d of composting that did not correspond to a reduction in solvent-extractable diazinon concentrations. Measuring symptomatic effects of xenobiotics as described in this study may increase the sensitivity and diagnostic ability of earthworm bioassays.  相似文献   

15.
The aim of this work was to study the distribution of imidacloprid in soil and its translocation to roots and aerial parts of maize plant. The main objective was to assess imidacloprid residues in field environment, in order to provide data on honeybees exposure level to such an active substance. Imidacloprid has been detected and quantified by Triple Quadrupole HPLC-MS-MS. Pesticide persistence in the soil and its residues in pollen and in maize plants have been evaluated during the growing of maize plants developed from seeds dressed with Gaucho 350 FS (imidacloprid: 1.0 mg/seed). The sowing has been performed by means of a pneumatic precision drill. Samples have been collected at 30, 45, 60, 80, 130 days after the sowing, as pollen samples have been collected at the tasseling. Imidacloprid presence in aerial part of maize plant declined to 2-3 μg/kg 80 days after the sowing, while concentration in kernel at harvest was <1 μg/kg. Maize pollen represents an important part of protein supply of beehives, and it is of critical importance to bee foraging. The values detected (imidacloprid residues <1 μg/kg) showed that maize pollen source should not be relevant for acute toxicity impact on honey bees.  相似文献   

16.
To investigate the effects of moist olive husks (MOH-residues) on soil respiration, microbial biomass, and enzymatic (o-diphenoloxidase, beta-glucosidase, dehydrogenase and alkaline phosphatase) activities, a silty clay soil was incubated with 0 (control), 8 x 10(3) (D), 16 x 10(3) (2D) and 80 x 10(3) (10D) kg ha-1 of MOH-residues on a dry weight basis. Soil respiration and microbial biomass data indicated that the addition of MOH-residues strongly increased microbial activity proportionally to the amounts added. Data of qCO2 suggested that the respiration to biomass ratio of the microbial population was strongly modified by MOH-residues additions during the first 90 days of incubation. The qCO2 data suggested a low efficiency in energy yields from C oxidation during the first 2 months of soil incubation. qFDA seemed to be relatively unaffected for treatments D and 2D as compared to the control, but was significantly lowered by the application of 10D, showing the lowest hydrolytic activity of microbial biomass in this treatment up to 360 days of incubation. o-Diphenoloxidase activity was delayed, and this delay was extended with the addition of larger quantities of MOH-residues. Alkaline phosphatase, beta-glucosidase and dehydrogenase activities were in line with the findings on microbial biomass changes and activities. The biological and biochemical data suggest that the addition of a large quantity of MOH-residues (80 x 10(3) kg ha-1) strongly modifies the soil characteristics affecting the r- and K-strategist populations, and that these changes last for at least the 360 days of incubation. The data also suggest that application rates exceeding 16 x 10(3) kg ha-1 are not recommended until the agro-chemical and -physical functions of the soil are further studied.  相似文献   

17.
Behaviour of forchlorfenuron residues in grape,soil and water   总被引:3,自引:0,他引:3  
Sharma D  Awasthi MD 《Chemosphere》2003,50(5):589-594
Persistence of forchlorfenuron residues in grape berries at harvest following its dip application as single or split doses to grape berry clusters and periodic dissipation of forchlorfenuron residues in grape berries following foliar spray application were studied. Periodic dissipation of forchlorfenuron residues following its fortification in soil and water were also studied. Splitting the dip application concentration of forchlorfenuron to grape berries reduced its residues in the berries at harvest, which persisted for more than 65 days from all treatments. In case of foliar application, however, the residues of forchlorfenuron in/on the grape berries persisted for 15-20 days only from three treatment concentrations of 2, 3 and 4 ml/l and dissipated with half-lives of 3.4-4.5 days. The residues of forchlorfenuron dissipated faster in soils maintained at field capacity moisture condition than in air dry soils. There was wide variation in its residue persistence in soil (DT50 = 15.1-121.3 days) depending on soil type and moisture condition. Forchlorfenuron residues persisted for more than 30 days in water and its dissipation was fastest at a water salinity level of 3.85 mmho/ cm although the rate of dissipation was not significantly affected by the change in salinity level from <0.04 to 5.90 mmho/cm.  相似文献   

18.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

19.
Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylsulphite) and quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) persistence and their effect on soil microarthropods were studied after repeated applications in cotton fields. Dissipation behavior of insecticides after repeated applications was observed from 78 to 292 days after the first insecticide treatment. At any given time the concentrations of endosulfan beta residues were always higher as compared to endosulfan alpha. From 78 to 85 days, 5.0% and 20.4% decrease in alpha and beta endosulfan residues was observed, respectively. Endosulfan beta isomer decreased up to 93.0% in 292 days. Endosulfan sulfate was detected as a major metabolite in the soil samples. Total endosulfan residues decreased by 86.6% from 78 to 292 days. The amounts of quinalphos residues were less as compared to endosulfan at any given time. The residues observed after 78 days of application were 0.88 ng g-1 d wt. soil. At the end of 145 days, a 35.0% decrease in quinalphos residue was observed, which decreased further by 50.9% in 292 days. Among the soil microarthropods studied, Acarina was more sensitive to the applied insecticides as compared to Collembola. Three days after the last treatment, up to 94.5% (p < 0.01) and 71.2% (p < 0.05) decrease in Acarina population was observed in endosulfan and quinalphos treated fields, respectively, compared to control field. In general, no noticeable change in Collembola population was observed after the insecticide treatments.  相似文献   

20.
The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9 x 10-12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg-1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg-1, fixed by EU) after 7 days for both treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号