首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
通过检测西南某气田回注站回注水水样,发现硫酸盐还原菌、腐生菌、铁细菌严重超标,迫切需要对其进行杀菌处理,避免细菌对管道设备的长期腐蚀。研究发现,杀菌剂复合配方A、复配B在投加量为30ppm时,其对硫酸盐还原菌、腐生菌、铁细菌的杀菌率均达到99.9%以上,处理后水样满足回注标准要求,在现场应用中也达到相同杀菌效果。  相似文献   

2.
气田回注水中的细菌在大量繁殖过程中会严重损害注水设备及地层,检测西南某气田回注站水样,发现硫酸盐还原菌、腐生菌、铁细菌严重超标,需对其进行杀菌处理,以期达到回注标准要求(SY/T5329—94)。通过研究,筛选出了戊二醛、有机胍等高效的杀菌剂,杀菌剂投加量分别为30ppm时,对水样中的硫酸盐还原菌、腐生菌、铁细菌的杀菌率均达99%,处理后水样满足回注标准要求,在现场应用中也达到相同杀菌效果。  相似文献   

3.
ClO2处理含铁,锰及细菌饮用水的应用研究   总被引:1,自引:0,他引:1  
陈贤  周明 《四川环境》1996,15(2):12-14
为了除去水中高含量的铁,锰及细菌,采用ClO2氧化Fe^2+,Mn^2+和灭菌的方法。研究结果表明,处理后水平铁,锰都末检出,细菌指标符合国家饮用水标准。此法具有工艺简单,操作方便,反应速度快,去除率极高,不产生致癌物质THM、且能很好地除水中的异味及色度等优点。此法适用于各种生活给水系统。  相似文献   

4.
生物铁法和生物铁填料法在难降解有机废水处理中的应用   总被引:2,自引:0,他引:2  
程汉林 《环境技术》2004,22(3):30-31,33
综述了生物铁法及生物铁填料法处理难降解有机废水的研究和应用情况。指出生物铁法和生物铁填料法可以提高生化处理效果,生物铁法和生物铁填料法具有良好的应用前景,有必要做深入的研究。  相似文献   

5.
微波应用于油田采出水处理,具有辅助絮凝、杀菌、降低腐蚀的作用。实验表明:应用微波处理油田采出水,可使PAC(聚合氯化铝)加量减少20%、PAM(聚丙烯酰胺)减少30%,处理时间仅为常规工艺的1/4,微波处理60s可将采出水中的TGB(腐生菌)、FEB(铁细菌)、SRB(硫酸盐还原菌)杀死99%以上,与常规工艺相比,微波处理后水质腐蚀率可下降20%以上。  相似文献   

6.
超声内电解处理高浓度含盐有机废水的实验研究   总被引:1,自引:0,他引:1  
分别研究了铁碳内电解、超声波辐照以及不同组合方式对高盐度泡菜废水的处理,重点研究了铁碳比、铁碳加入量、溶液pH值、处理时间、超声功率密度等因素对高含盐量泡菜废水降解率的影响。实验表明,铁碳加入对内电解处理效果影响显著,超声波处理该废水的最佳pH值为7;超声内电解处理的最佳条件为:铁碳比2∶1,铁碳加入体积为溶液体积的25%,溶液初始pH值为7,超声功率密度为0.225w/cm3,曝气处理90min。处理后出水COD去除率大于50%,达到了对该类高浓度含盐废水的预处理效果,降低了后续生化系统的处理负荷。  相似文献   

7.
纳米零价铁对多种污染物质均有较好的去除效果,在污染的水体、土壤及底泥中被广泛研究与应用。前人对纳米零价铁的制备、在污染治理各方面的应用、作用的机理等方面进行了较为详细的总结,针对纳米零价铁在应用中存在的问题虽有提及,但少有人集中进行整理。本文主要针对纳米零价铁在环境治理方面存在的问题进行论述并对提高其反应活性的常用方法进行了总结,以期为纳米零价铁实际应用领域的深入研究提供借鉴并拓展新的思路。  相似文献   

8.
针对中空纤维膜应用于水力压裂返排液处理时存在膜污染严重、通量衰减快、影响处理效率等问题,研究了PVDF(聚偏氟乙烯)固含量、凝固浴温度等因素对PVDF膜性能的影响,通过非溶剂致相分离法制备PVDF中空纤维膜,并采用表面接枝技术,对PVDF中空纤维膜进行了表面亲水化改性。压裂返排液吸附实验结果表明,表面接枝降低了PVDF的接触角,提高了膜的亲水性。将亲水性中空纤维膜用于页岩气水力压裂返排液的过滤处理,应用结果表明其对压裂返排液中的总铁、SS、浊度、细菌去除率达到90%以上,长时间运行后的通量保持率高,有较好的抗膜污染性。  相似文献   

9.
催化铁应用于草甘膦废水处理工艺改造的可行性研究   总被引:1,自引:0,他引:1  
针对某化工厂草甘膦废水经厌氧-好氧生物处理后出水总磷浓度高,无法达到该化工区污水纳管标准的情况,应用催化铁方法对该废水现有处理工艺进行改造以提高出水水质。考察了催化铁方法对原处理工艺不同处理工段出水中磷的去除效果,发现该法可有效地去除生物厌氧池出水的总磷及正磷盐,去除率分别达到52.7%和83.13%以上,且使废水的BOD5/COD值显著提高,可从0.08提高至0.31,增强了废水的可生物降解性,有利于后续好氧生物处理的进行。研究表明在原处理工艺的厌氧池后增加催化铁处理段能明显提高最终出水水质。  相似文献   

10.
针对中空纤维膜应用于水力压裂返排液处理时存在的膜污染严重、通量衰减快、影响处理效率等问题,研究了PVDF固含量、凝固浴温度等因素对PVDF膜性能的影响,通过非溶剂致相分离法制备了PVDF中空纤维膜,并采用表面接枝技术,对PVDF中空纤维膜进行了表面亲水化改性。压裂返排液吸附实验结果表明,表面接枝降低了PVDF的接触角,提高了膜的亲水性。与未接枝改性的PVDF膜相比,亲水改性后的PVDF膜表面吸附的压裂返排液更少。将亲水性中空纤维膜用于页岩气水力压裂返排液的过滤处理,应用结果表明其对压裂返排液中的总铁、SS、浊度、细菌去除率达到90%以上,长时间运行后的通量保持率高,有较好的抗膜污染性。  相似文献   

11.
二氧化氯杀菌处理石化循环冷却水   总被引:1,自引:0,他引:1  
以硫酸盐还原菌,铁细菌以及异养菌数为指标,研究二氧化氯对石化厂循环冷却水的杀菌效果。考察了二氧化氯投加量,杀菌时间,温度及pH以及余氯量随时间的变化。结果表明,在CLO2投加量为3mg/L、灭菌时间为90min时,出水细菌数即可达到化工行业循环冷却水处理标准,并且余氯可在0.5-1.0mg/L范围内维持2h。温度和pH的改变对杀菌效果影响不大。  相似文献   

12.
文章以风城油田稀油污水处理为例,分析污水处理系统中悬浮物的形成机理,并对污水含油、悬浮物、固体含量、粒径中值、聚合物含量、细菌、温度、硫化物、二价铁、pH值等水质指标进行分析,找出影响污水处理的主要因素,并对油水悬浮物处理方法进行室内分析及现场物理、化学方法实践,解决污水处理系统中悬浮物问题。  相似文献   

13.
Biological mine drainage treatment   总被引:1,自引:0,他引:1  
Drainage from sulphur mines contains a high concentration of ferrous iron and it is strongly acidic. The mechanism of acid mine drainage formation was briefly explained. As a case study, successful measures taken at the abandoned Matsuo mine, Iwate Prefecture, Japan, for preventing the pollution in receiving rivers was presented in this paper. The measures consisted of the construction works against pollution sources and the construction of a drainage treatment plant in which Thiobacillus ferrooxidans oxidizes ferrous iron under a low pH condition, and produced ferric iron is removed by sedimentation. Then, a laboratory-scale fluidized bed reactor using anion exchange resin as attaching material for the bacteria was examined in order to improve the efficiency of biological oxidation of ferrous iron. More than 90% of oxidation had been maintained for 2 months at 1 h of HRT, which suggests that the size of the oxidation tank could be reduced.  相似文献   

14.
Industrialization plays a major role in a nation's growth. However, with an increase in industrial activities, pollution levels are also increasing. Among all industries, the sugar‐processing industry is one that requires large amounts of water to process the sugar, and, consequently, it discharges large amounts of water as effluent. Highly polluted wastewater brings changes to the physicochemical characteristics of the surrounding environment. Iron compounds have had a significant impact when they are used in wastewater treatment in various applications, including when they are used to minimize the pollution levels in sugar industry wastewater (SIWW). To minimize the pollutant levels from SIWW, iron compounds have been key for uses in treatments involving chemical and electro‐oxidation. Two different methodologies of electrocoagulation and chemical coagulation have been used to treat SIWW. In electrocoagulation, an iron plate is used as an electrode material under specific operating conditions. Ferrous sulfate and ferric chloride have been used as chemical coagulants at various pH and mass loading levels. The use of iron metals shows an 82% reduction in chemical oxygen demand (COD) and an 84% reduction in color at the optimum condition of pH 6, an electrode distance of 20 millimeters, and a current density of 156 square centimeters. As a chemical coagulant, iron salt (ferrous sulfate) provides a reduction of 77% COD and a 91% reduction of color at pH 6 and a 40‐millimole mass loading. Electrochemical treatment using iron was found to be suitable to treat SIWW. The sludge generated after treatment can be burned or composted with the possible recovery of some of the treatment costs.  相似文献   

15.
US government regulations require that all effluents from industrial operations, including mining, meet certain water quality standards. Constructed wetlands have proven to be useful in helping to attain those standards. Application of this biotechnology to mine water drainage can reduce water treatment costs and improve water quality in streams and rivers adversely affected by acidic mine water drainage from abandoned mines. Over 400 constructed wetland water treatment systems have been built on mined lands largely as a result of research by the US Bureau of Mines. Wetlands are passive biological treatment systems that are relatively inexpensive to construct and require minimal maintenance. Chemical treatment costs are reduced sufficiently to repay the cost of construction in less than a year. The mine waste water is typically treated in a series of excavated ponds that resemble small marsh areas. The ponds are engineered to facilitate bacterial oxidation of iron. Ideally, the water then flows through a composted organic substrate supporting a population of sulphate-reducing bacteria which raises the pH. Constructed wetlands in the USA are described - their history, functions, construction methodologies, applicabilities, limitations and costs.  相似文献   

16.
微生物烟气脱硫技术研究进展   总被引:9,自引:1,他引:9  
通过对微生物烟气脱硫方法的介绍,综述了微生物烟气脱硫原理、工艺和技术。叙述了烟气吸收和吸收尾液的处理工艺所利用的脱硫微生物种类,并阐述了氧化亚轶硫杆菌、硫酸盐还原茵、丝状硫细菌、光合硫细菌、无色硫细菌和脱氮硫杆菌的代谢途径、作用效果和关键影响因素,并且指出其优缺点。文章总结了国内外在微生物烟气脱硫工艺的研究进展,并对我国今后微生物烟气脱硫技术发展趋势进行了简要分析。  相似文献   

17.
The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.  相似文献   

18.
Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号