首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production and purification abilities of the water hyacinth, Eichhornia crassipes (Mart.) Solms., were tested on petrochemical wastewaters at Raffinerie de Provence, Total (La Mède, France), in controlled and in situ experiments. The mean production obtained was of about 6.1 g (dry weight) day−1 m−2 (10-fold lower than those obtained on paper industry effluent), and can be explained by the high salinity and pH of the effluent, and the negative effect of hydrocarbons. In comparison with the control pond, the water hyacinth system induced a rapid settlement effect. Finally, the removal gains due to the water hyacinths system were about 26% for the suspended solids (i.e. 40.1 kg day−1), 28% for the total hydrocarbons (i.e. 17.2 kg day−1) and 18% for the total organic carbon (i.e. 27 kg day−1).  相似文献   

2.
The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg−1, 1 g kg−1, 10 g kg−1, and 100 g kg−1 on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ? 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics.  相似文献   

3.
129I is one of the more hazardous nuclides occurring in radioactive waste. In the form of I, its most likely speciation, it is poorly sorbed on most geologic media. Several workers have suggested the use of silver to precipitate I as the insoluble AgI, in a cemented waste form, or as a “getter”. The efficacy of this procedure is examined by experiment, in conjunction with thermodynamic predictions.The addition of AgNO3 to Portland cement leads to coprecipitation with C-S-H, with low Ag solubilities ( 10 μmg/L); 2–;3 orders of magnitude lower than predicted (from Ag2O). AgI is stable in these matrices, with low aqueous I concentrations (<2 mg/L). In 85% BFS-15% OPC pastes, AgI is unstable due to redox and complexation reactions, with much I passing into solution; concentrations up to 900 mg/L were observed. It is shown that repository conditions, on closure, are also likely to induce solubilisation of I from AgI. It is concluded that the use of Ag is unlikely to significantly improve the immobilisation properties of the near field for radioiodine.  相似文献   

4.
Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected “raw” and primarily “engineered” (“composite”) wood wastes.The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in “engineered” wood wastes as compared with “raw” wood wastes; and relatively high energy content values of “engineered” wood wastes (ranging on the whole from 3675 to 5105 kcal kg−1 for HHV, and from 3304 to 4634 kcal kg−1 for LHV).The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in “engineered” wood burning tests of pyrroles and amines, as well as the additional presence (as compared with “raw” wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon.Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in “engineered” wood burning tests as compared with “raw” wood burning test; and considerable generation of the respirable PM1 fraction during incomplete industrial wood burning.  相似文献   

5.
Garden waste generation and composition were studied in Aarhus, Denmark. The amount of garden waste generated varied seasonally, from 2.5 kg person?1 month?1 in winter to 19.4 kg person?1 month?1 in summer. Seasonal fractional composition and chemical characterization of garden waste were determined by sorting and sampling garden waste eight times during 1 year. On a yearly basis, the major fraction of garden waste was “small stuff” (flowers, grass clippings, hedge cuttings and soil) making up more than 90% (wet waste distribution) during the summer. The woody fractions (branches, wood) are more significant during the winter. Seasonal trends in waste chemical composition were recorded and an average annual composition of garden waste was calculated, considering the varying monthly generation and material fraction composition: the wet garden waste contained 40% water, 30% organic matter (VS) and 30% ash. The ash content suggests that the garden waste contains a significant amount of soil. This is in particular the case during summer. Of nutrients, the garden waste contained in average on a dry matter basis 0.6% N, 0.1% P, and 1.0% K. However, the contents varied significantly among the fractions and during the year. The content of trace elements (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) was low.  相似文献   

6.
Extensive investigations of leachates and solid waste samples for organic sum parameters and environmentally relevant organic compounds were carried out at the hazardous waste landfill of Raindorf, which is operated in accordance with German Technical Instructions on Waste (TI Waste). The measurements showed that the majority of the waste samples contained only minor amounts of phenols, highly volatile chlorinated organic compounds (VCHC), benzene, toluene, ethylbenzene and xylene (BTEX), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). The concentrations ranged from less than 100μg/kg−1up to 1000μg/kg−1of dry substance. Only hydrocarbons were detected in higher concentrations (mg to g kg−1of dry substance). In most leachate and gas samples taken at the landfill, the concentrations of the abovementioned parameters were close to or even below the detection limit. The measurement of organic single compounds underlined the usefulness of the sum parameters, adsorbable organic halogen compounds and phenol index, for the estimation of the total amount of these substances. A comparison of organic sum parameter concentrations measured in leachates from landfills of differing ages indicates that the application of TI Waste leads to a reduction of the organic load in the leachate.  相似文献   

7.
Environmental impacts associated to different waste treatments are of interest in the decision-making process at local, regional and international level. However, all the environmental burdens of an organic waste biological treatment are not always considered. Real data on gaseous emissions released from full-scale composting plants are difficult to obtain. These emissions are related to the composting technology and waste characteristics and therefore, an exhaustive sampling campaign is necessary to obtain representative and reliable data of a single plant. This work proposes a methodology to systematically determine gaseous emissions of a composting plant and presents the results obtained in the application of this methodology to a plant treating source-separated organic fraction of municipal solid waste (OFMSW) for the determination of ammonia and total volatile organic compounds (VOC). Emission factors from the biological treatment process obtained for ammonia and VOC were 3.9 kg Mg OFMSW−1 and 0.206 kg Mg OFMSW−1 respectively. Emissions associated to energy use and production were also quantified (60.5 kg CO2 Mg OFMSW−1 and 0.66 kg VOC Mg OFMSW−1). Other relevant parameters such as energy and water consumption and amount of rejected waste were also determined. A new functional unit is presented to relate emission factors to the biodegradation efficiency of the composting process and consists in the reduction of the Respiration Index of the treated material. Using this new functional unit, the atmospheric emissions released from a composting plant are directly related to the plant specific efficiency.  相似文献   

8.
Corn starch and zein mixtures (4 : 1 dry weight) were extruded and injection-molded in the presence of plasticizers (glycerol and water). Tensile strength and percentage elongation of the molded plastics were measured before and after 1 week of storage under a dry or humid condition (11 or 93% RH). With 10–12% glycerol and 6–8% water, injection-molded plastics had relatively good tensile properties (20- to 25-MPa tensile strength and 3.5–4.7% elongation). But while exposed to dry conditions (11% RH), the molded plastics lost weight (0.5–1.5% in 7 days) and became very brittle, with significant decreases in tensile strength and elongation. Partial replacement (5–10%) of starch with a maltodextrin (average DE 5) reduced the glass transition and melting temperatures of the starch-zein mixture as well as the dry storage stability. Using potato starch instead of corn starch significantly improved the dry storage stability of the injection-molded starch-zein plastics (18- vs 11-MPa tensile strength). Anionic corn starches with a maleate or succinate group (DS<0.01) produced injection-molded plastics with improved tensile properties and storage stability. Plastics prepared from the starch maleate and zein mixture retained the strength during 1 week of dry storage without a significant change (26-MPa tensile strength and 3.7% elongation after 1 week of storage).Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Journal paper No. J-15561 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2863.  相似文献   

9.
Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg?1 dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg?1 resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg?1 feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.  相似文献   

10.
Partly due to the complex and variable composition of oily sludge generated by the petroleum industry, cost-effective treatment and proper disposal pose considerable challenges worldwide. In this study, an extended component-based analysis of the oily sludge from a flocculation-flotation unit of a wastewater treatment system in a refinery in Sweden was carried out over 1 year. The heterogeneity of the oily sludge is illustrated by the wide ranges of concentrations found for different chemical components, particularly metals. Among the petroleum hydrocarbons, the most abundant compounds were nonpolar aliphatic hydrocarbons (63.7 ± 16.7 g kg−1); from the benzene, toluene, ethylbenzene, and xylene group, xylenes (91–240 mg kg−1) were most abundant; and among polycyclic aromatic hydrocarbons, naphthalene (25.7 ± 21.4), fluorene (27.25 ± 10.0), and phenanthrene (43.8 ± 18.4 mg kg−1) were most abundant (all results in terms of dry matter). Based on the EU guidelines and the mean concentration values for metals found in the oily sludge, e.g., Pb (135.4 ± 125.8), Cu (105.2 ± 79.1), Hg (42.8 ± 31.3), Ni (320 ± 267.4), and Zn (1321.7 ± 529.9 mg kg−1), disposal of oily sludge even in landfills for hazardous waste is not allowed. The organic content of the sludge can be reduced through biotreatment, but not the metal content. A multistep component-based treatment scheme is therefore needed.  相似文献   

11.
Due to the amounts of chromium in the leachate resulting from leather leaching tests, chromium sulfate tanned leather wastes are very often considered hazardous wastes. To overcome this problem, one option could be recovering the chromium and, consequently, lowering its content in the leather scrap. With this objective, chromium leather scrap was leached with sulfuric acid solutions at low temperature also aiming at maximizing chromium removal with minimum attack of the leather matrix. The effects of leather scrap dimension, sulfuric acid and sodium sulfate concentration in the solutions, as well as extraction time and temperature on chromium recovery were studied, and, additionally, organic matrix degradation was evaluated. The best conditions found for chromium recovery were leather scrap conditioning using 25 mL of concentrated H2SO4/L solution at 293 or 313 K during 3 or 6 days. Under such conditions, 30–60 ± 5% of chromium was recovered and as low as 3–6 ± 1% of the leather total organic carbon (TOC) was dissolved. Using such treatment, the leather scrap area and volume are reduced and the residue is a more brittle material showing enhanced anaerobic biodegradability. Although good recovery results were achieved, due to the fact that the amount of chromium in eluate exceeded the threshold value this waste was still hazardous. Thus, it needs to be methodically washed in order to remove all the chromium de-linked from collagen.  相似文献   

12.
Semi-natural calcareous and acidic grasslands are known to be sensitive to increased atmospheric N deposition. However, the fate of pollutant N within these systems is unknown. This paper reports on the first studies to determine the fate of added N within a calcareous and an acidic grassland subject to long-term simulated enhanced N deposition. Intact soil/turf cores were removed from field plots treated for six years with enhanced N deposition (ambient +0, +35 and +140 kg N ha–1 year–1). Cores were inserted into lysimeters and output fluxes of N were monitored in detail. Complete N budgets—calculated from the N flux data—showed considerable accumulation of N within the treated grasslands, up to 76% and 38% of pollutant N in the calcareous and acidic grasslands respectively. In the second study, the short-term (21 day) fate of pollutant N was determined by tracing 15N labelled ammonium nitrate (+35 kg N ha–1 year–1) though the acidic and calcareous lysimeters into plant, soil and leachate pools. Up to 91% and 59% of 15N was recovered in soils and vegetation of the calcareous and acidic grasslands respectively, with negligible amounts recovered in soil extractable ammonium and nitrate (<0.3%) and in leachate (<0.02%). This rapid short-term immobilisation of pollutant N supports the long-term accumulation of the element calculated from the N flux study.  相似文献   

13.
The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275 °C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg−1 toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg−1 in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases.  相似文献   

14.
Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous ‘wet’ and ‘dry’ digesters at organic loading rate (OLR) up to 6 kg volatile solids (VS) m?3 day?1. The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the ‘dry’ digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In ‘wet’ digestion a fine particle size led to severe foaming and the process could not be operated above 5 kg VS m?3 day?1. Although the trial was not designed as a direct comparison between ‘wet’ and ‘dry’ digestion, the specific biogas yield of the ‘dry’ digesters was 90% of that produced by ‘wet’ digesters fed on the same waste at the same OLR.  相似文献   

15.
Concentrations and Pools of Heavy Metals in Urban Soils in Stockholm,Sweden   总被引:8,自引:0,他引:8  
The concentrations of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb andZn) and arsenic (As) were surveyed and the metal pools estimatedin soils in Stockholm Municipality. The sampling sites were distributed all over the entire municipality with a higher sampling density in the city centre. Soils were sampled to a maximum depth of 25 to 60 cm. Soil texture, total-C content, electrical conductivity and pH were analysed. Heavy metal concentrations were determined after wet digestion with boiling7 M HNO3.The results showed a wide range in heavy metal concentrations, as well as in other soil properties. The city centre soils constituted a rather homogeneous group whereas outside this areano geographical zones could be distinguished. These soils were grouped based on present land use, i.e. undisturbed soils, public parks, wasteland (mainly former industrial areas), and roadside soils. The city centre and wasteland soils generally hadenhanced heavy metal concentrations to at least 30 cm depth compared to park soils outside the city centre and rural (arable)soils in the region, which were used to estimate background levels. For example, the mean Hg concentration was 0.9 (max 3.3)mg kg-1 soil at 0–5 cm and 1.0 (max 2.9) at 30 cm depth in the city centre soils, while the background level was 0,04 mg kg-1. Corresponding values for Pb were 104 (max 444) and135 (max 339) mg kg-1, at 0–5 and 30 cm, respectively, while the background level was 17 mg kg-1.The average soil pools (0–30 cm depth) of Cu, Pb and Zn were 21,38 and 58 g m-2 respectively, which for Pb was 3–4 timeshigher and for Cu and Zn 1.5–2 times higher than the backgroundlevel. The total amount of accumulated metals (down to 30 cm)in the city centre soils (4.5*10 6 m2 public gardens and green areas) was estimated at 80, 1.1, 120 and 40 t for Cu, Hg, Pb and Zn, respectively. The study showed (1) thatfrom a metal contamination point of view, more homogeneous soilgroups were obtained based on present land use than on geographicdistance to the city centre, (2) the importance of establishing a background level in order to quantify the degree of contamination, and (3) soil samples has to be taken below the surface layer (and deeper than 30 cm) in order to quantify theaccumulated metal pools in urban soils.  相似文献   

16.
Aspergillus foetidus has the ability to take up chromium during the stationary phase of growth and under growth-nonsupportive conditions. We observed a 97% decrease in hexavalent chromium (initial concentration 5 µg/g) at the end of 92 h of growth, which may be due to its reduction to Cr (III) and/or complexation with organic compounds released due to the metabolic activity of the fungus. Replacement culture studies under growth-nonsupportive conditions revealed that the maximum uptake of Cr (VI) at pH 7.0 is 2 mg/g of dry biomass. At low or high pH values, Cr (VI) uptake is significantly reduced. In addition, the initial rate of total chromium uptake is also enhanced by higher biomass concentrations and the presence of glucose. The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Aspergillus foetidus.  相似文献   

17.
One aerobic and two combined bio-drying processes were set up to investigate the quantitative relationships of sorting efficiency and combustion properties with organics degradation and water removal during bio-drying. Results showed that the bio-drying could enhance the sorting efficiency of municipal solid waste (MSW) up to 71% from the initial of 34%. The sorting efficiency was correlated with water content negatively (correlation coefficient, r = −0.89) and organics degradation rate positively (r = 0.92). The higher heating values (HHVs) were correlated with organics degradation negatively for FP (i.e. the sum of only food and paper) (r = −0.93) but positively for the mixing waste (MW) (r = 0.90), whereas the lower heating values (LHVs) were negatively correlated with water content for both FP (r = −0.71) and MW (r = −0.96). Other combustion properties depended on organics degradation performance, except for ignition performance and combustion rate. The LHVs could be greatly enhanced by the combined process with insufficient aeration during the hydrolytic stage. Compared with FP, MW had higher LHVs and ratios of volatile matter to fixed carbon. Nevertheless, FP had higher final burnout values than MW.  相似文献   

18.
Antibiotics of inorganic and organic origin in pig manure can inhibit the anaerobic process in biogas plants. The influence of three frequently used antibiotics, copper dosed as CuSO4, sulfadiazine (SDZ), and difloxacin (DIF), on the anaerobic digestion process of pig manure was studied in semi-continuous experiments. Biogas production recovered after every Cu dosage up to a sum of 12.94 g Cu kg−1 organic dry matter (ODM), probably due to Cu precipitation following the formation of sulphide from sulphate. Complete inhibition was found at the very high Cu concentration of 19.40 g Cu kg−1 ODM. Inhibitory effect of SDZ and DIF was observed at concentrations as high as 2.70 g kg−1 ODM and 0.54 g kg−1 ODM, respectively. It seems very unlikely that the antibiotics tested would inhibit the anaerobic process in a full-scale biogas plant.  相似文献   

19.
A new biodegradable synthetic polyesteramid (PEA) was characterized by means of thermogravimetry (TG) differential scanning calorimetry (DSC) and dynamic rheological measurements. Two glass transition ranges at about –33 and 38°C and a melting enthalpy of 33 J/g were measured, indicating that PEA is an immiscible blend of two components with a small crystalline part. The material was spun in a high-speed spinning process within the range of 2,000–6,000 M/min and an underpressure spunbonding process within the range of 3,600–7,700 M/min. The textile physical properties of the fibers were 100 MPa tenacity at an elongation at break of 30%, and an E-modulus of 0.5 GPa. The mass per unit area of the spunbonded nonwovens ranged from 70–159 g/M 2. The strength of the spunbonded nonwovens was 28–51 N and 42–74 N in machine and cross direction, respectively. The air permeability of the nonwovens decreased at high air velocities and more fineness of the filaments from 1240–380 l/M 2 s.  相似文献   

20.
The effect of liming and ash treatment on pools, fluxes and concentrations of major solutes was investigated at two forestedsites (Norway spruce) in S. Sweden. One site was treated 15 yrprior to sampling (Hasslöv-Hs; dolomite: 3.45 and 8.75 t ha-1) and the other 4 yr before (Horröd-Hd; dolomite: 3.25 t ha-1; wood ash: 4.28 t ha-1). Effects of limingwere most pronounced in the O horizon solutions where higher pH,elevated Ca (120–700 M) and Mg (50–600 M) were observed as compared to control plots. The impact on the mineralsoil was more moderate. Soil solution concentrations were combined with modelled hydrological flow to calculate mass flows,which largely followed the trends of the solution composition. Liming also resulted in large increases of both exchangeable Caand Mg as well as effective cation exchange capacity (CECE;2–5 times the controls). The base saturation (BS%) was raised to 60–100% in the O horizon while in the mineral soil elevated values were only seen at the Hs site (20–60%; down to 10–15 cm depth for 8.75 t ha-1). Ash treatment did notaffect either the soil solution nor the exchangeable pool to thesame extent as lime. In general, the impact at the Hd site was less pronounced especially in the mineral soil, which might be due to shorter treatment time (4 vs. 15 yr) and also differentthickness of the O horizon. Budget calculations for Ca and Mg originating from the lime showed that a major part of the Ca (40–100%) was retained in the top 30 cm of the soil, of which30–95% was present in the O horizon. The mobility of Mg wasgreater and it was estimated that a significant part had been leached from the profile (30 and 50 cm depth) after 15 yr. Increased mass flows of NO3 - due to nitrification resulting from liming at the Hs site were calculated in the range120–350 mmol m-2 yr-1 (or 1.2–3.5 kmol ha-1 yr-1). There was significant leaching of Al (25–60 mmol m-2 yr-1), of which about 70% was inorganic, in thelower B horizon at both sites with no influence of liming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号