首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为评价丁基钠黄药的热稳定性,采用真空安定性测试仪和C600量热仪对其热分解过程进行了研究。分别考察了质量为1.0g的样品在温度为60℃、70℃、80℃、90℃、100℃和质量为0.5g、0.75g、1.0g、1.25g、1.5g、1.75g、2.0g的样品在温度80℃条件下的热分解特性。结果表明,采用真空安定性测试仪在80℃、21mL真空封闭空间的测试条件下,当丁基钠黄药质量小于1.25g时,其平均分解速率较慢,与时间近似成线性关系;当样品质量大于1.50g时,其平均分解速率与时间近似呈一条S形曲线。平均分解速率与质量不是成正比,而是先增加后减小,质量为1.65g时,平均分解速率最大,为0.0957mL/(g.h)。采用C600量热仪确定了丁基钠黄药的分解过程为吸热反应,起始分解温度为93℃,分解过程吸收热量为110.51J/g。明确了温度、堆积样品量的大小和时间为影响丁基钠黄药热稳定性的主要因素。  相似文献   

2.
为研究有机酸对H发泡剂热分解特性的影响,采用量热仪测试不同质量分数苯甲酸、水杨酸、邻苯二甲酸与H发泡剂混合物的热分解特性参数。结果表明:H发泡剂分解时,随着升温速率增加,外推起始分解温度Te、峰值温度Tp与最大放热速率随之升高。3种有机酸的加入均可以促进H发泡剂的分解,随着有机酸质量分数的增加,其外推起始分解温度和峰值温度呈现同步下降趋势。有机酸熔融生成的H+对H发泡剂分解过程具有显著影响。加入水杨酸能显著降低H发泡剂分解的热释放速率,降低H发泡剂分解过程中的热风险,当水杨酸质量分数达到24%时,较之混有苯甲酸与邻苯二甲酸的H发泡剂外推起始分解温度降低20 ℃。  相似文献   

3.
过氧化氢异丙苯热稳定性与热安全性研究   总被引:2,自引:1,他引:1  
为研究过氧化氢异丙苯(CHP)的热稳定性和热安全性,利用C80微量量热仪对CHP在空气中的热分解进行试验研究。利用热分析技术研究CHP的热分解,得到了升温速率对CHP热分解的影响,CHP热分解的活化能,绝热条件下最大反应速率到达时间Tmrad和不同包装下的自加速分解温度。结果表明:随着升温速率的增加,CHP的起始放热温度和最大放热温度随之升高;CHP热分解的活化能范围为52~91 kJ/mol;Tmrad为1,8,24,50和100 h时对应的起始温度分别为118.08,75.41,55.83,44.83和34.52℃;CHP的储罐内径越大,其对应的自加速分解温度越低。  相似文献   

4.
为了分析过氧化二异丙苯(Dicumyl Peroxide,DCP)的热稳定性和热安全性,利用C80微量量热仪对DCP在空气中的热分解及稳定性能进行试验研究,得到了升温速率对DCP热分解的影响规律,运用AKTS高级热动力学软件计算得到DCP热分解的活化能及指前因子、绝热条件下最大反应速率到达时间TMRad和不同包装下的自加速分解温度。结果表明:随升温速率增加,DCP的起始放热温度和最大放热温度升高;并由Friedman法得到不同转化率下活化能E和指前因子A的关系,计算得到DCP热分解的活化能范围为50~130 kJ/mol;TMRad为1 h、8 h、24 h、50 h和100 h时对应的起始温度分别为105.33℃、84.38℃、74.38℃、68℃和62℃;DCP的储罐内径越大,其对应的自加速分解温度越低。在生产、制造、储存、运输等过程中,应防止因温度变化而引发DCP的自分解放热爆炸事故。  相似文献   

5.
为了研究重结晶前后LLM-105在敞开体系、绝热体系中的热分解特性,采用溶剂-非溶剂法制备了形状规则、缺陷更少的重结晶LLM-105。以差示扫描量热仪研究了LLM-105的非等温热分解行为,利用Friedman法得到了非等温热分解动力学参数及TD24。采用加速量热仪研究了LLM-105的绝热分解行为,计算了绝热分解动力学参数及SADT。结果表明,重结晶LLM-105的非等温热分解起始温度(升温速率为10℃/min)、绝热起始分解温度、绝热最大升温速率分别为353.12℃、277.19℃、77.39℃/min,未重结晶LLM-105的相应参数值分别为341.62℃、273.77℃、136.62℃/min。重结晶LLM-105的非等温热分解起始温度、绝热起始分解温度更高,绝热最大升温速率更小。结晶品质是LLM-105的热分解特性、热危险性的重要影响因素。重结晶LLM-105具有更好的热稳定性,绝热分解反应更温和。  相似文献   

6.
为了研究十六烷值改进剂—硝酸异辛酯(EHN)的热稳定性与热危险性,采用C600微型量热仪测试硝酸异辛酯的热分解特性.利用热分析技术考察温升速率对EHN热分解特性的影响,并利用活化能、TMRad(在绝热条件下最大反应速率到达时间)和自加速分解速率(SADT)方法评价此改进剂的危险性.结果表明,EHN发生分解反应的起始放热温度和最大放热温度均随着温升速率的增加而增大,且四种温升速率的反应机理是一致的.计算得到EHN热分解活化能在143.6-213.6kJ/mol之间.通过绝热条件下TMRad评价得出EHN在常温常压条件下不易发生危险失控,EHN自加速分解温度为98℃>75℃,即在常温条件下储运是安全的,为储运硝酸异辛酯提供有力的数据支持.  相似文献   

7.
过氧化甲乙酮的热危险性研究   总被引:1,自引:0,他引:1  
为研究过氧化甲乙酮(MEKPO)在运输与储存中的热危险性,利用差示扫描量热仪(DSC)对质量分数为52%的MEKPO溶液(以2,2,4-三甲基-1,3-戊二醇二异丁酸酯为溶剂)进行测试,得到其起始分解温度T0约为40℃,比放热量ΔH约为1.24 kJ/g。运用加速量热仪(ARC)对3种MEKPO溶液(40%,45%和52%)及MEKPO纯品(化学纯)在绝热条件下进行了热分解测试,并在此基础上,借助Semenov热爆炸模型,计算得到上述样品在50 kg包件下的自加速分解温度(TSADT)分别为65.64,63.72,55.88和51.17℃。研究结果表明,加入稀释稳定剂是降低MEKPO热危险性的有效途径,且MEKPO混合物中其质量分数越大,其危险性越高。  相似文献   

8.
为研究高能钝感材料2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)与氟橡胶造型粉的热分解特性和热稳定性,利用绝热加速量热仪测试其在绝热条件下的热分解过程,获得了热分解的升温速率、温度和压力等随时间的变化关系及升温速率、压力随温度的变化曲线。结果表明,绝热分解开始前有一个缓慢的吸热升温过程,绝热分解过程主要有3个放热反应阶段,其中第二阶段升温速率升降幅度较大,为主要的热分解阶段。绝热分解反应的表观活化能、指前因子和反应热分别为358.87 kJ/mol、3.374×1027min-1和685.62 J/g。造型粉初始分解温度高达290.6℃,具有良好的热稳定性。  相似文献   

9.
用加速量热仪研究乳化炸药的热稳定性   总被引:13,自引:0,他引:13  
使用加速量热仪(ARC)研究了一种新型乳化炸药的热稳定性,得到了乳化炸药样品的热分解温度和压力随时间的变化曲线以及自热速度,分解压力随温度的变化曲线,分析了其热分解过程,计算了表观活化能Ea和指前因子A。测试和分析结果表明所测试的乳化炸药具有良好的热稳定性。  相似文献   

10.
为研究环氧乙烷热稳定性及杂质对其影响,利用C600微量量热仪对环氧乙烷进行热分解试验研究,获得了环氧乙烷分解活化能和绝热条件下到达最大反应速率所需时间(TMRad)等动力学参数.研究了氢氧化钾固体、45%氢氧化钾溶液、三氧化二铁和六水三氯化铁对环氧乙烷热分解特性的影响.结果表明:随温升速率的增加,环氧乙烷热分解起始放热温度逐渐增大;分解活化能E在55~ 90 kJ/mol;环氧乙烷在常温下不易发生热失控;但氢氧化钾固体、45%氢氧化钾溶液、三氧化二铁和六水三氯化铁均对环氧乙烷的热分解有一定程度的影响,使其起始放热温度和最大放热温度都有不同程度的降低,且氢氧化钾溶液和氢氧化钾固体的影响最为明显.  相似文献   

11.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

12.
为评价二溴海因(简称DBDMH)在使用、储运过程中的危险性,采用75℃热稳定性试验对二溴海因在高热条件下的稳定性进行了研究,采用C600微量热法测试了二溴海因的放热起始温度、分解热,并依据《联合国关于危险货物运输的建议书-试验和标准手册》对其爆炸性进行了筛选,通过固体氧化性试验和家兔皮肤刺激性/腐蚀性试验分别对二溴海因的氧化性和皮肤刺激性进行了测试。结果表明:二溴海因在75℃热稳定性试验过程中没有出现着火或爆炸,未出现自加热迹象,不属于太不稳定不能运输的物质;其分解反应只有一步,起始反应温度大约为157℃,分解热为384.8J/g,不属于爆炸品;二溴海因具有氧化性,根据《联合国关于危险货物运输的建议书-规章范本》其包装级别为Ⅱ级;在家兔皮肤刺激性/腐蚀性试验中未见不可逆损伤,对皮肤具有强刺激性。  相似文献   

13.
为研究储氢材料Kβ-MgH2分解放气过程,在以10 ℃为步长,80~130 ℃区间内,48,120 h时间条件下,采用基于传感器压力变化计算被测物质分解放气量的动态真空安定性测试(DVST)方法,得到在上述条件下Kβ-MgH2分解过程中的压力变化、Kβ-MgH2的单位分解放气量和在不同研究温度下的分解放气规律,分析DVST测试时长的设置方法,验证Kβ-MgH2在时温等效系数为2.5时的时温等效特性。结果表明:在选定的测试条件下,Kβ-MgH2分解放气量稳定,单位分解放气量与样品状态无关;Kβ-MgH2单位质量放气量先快速增加,随后趋于平稳,测试温度越高,Kβ-MgH2放气速率越快,单位质量放气量越大;根据选定的测试温度和温度变化步长,可知Kβ-MgH2分解放气过程具有时温等效性。  相似文献   

14.
利用微型燃烧量热计(MCC)、热重分析(TGA)、实时红外光谱(RTFTIR)以及热重-红外联用技术(TG-FT-IR)研究了PVC电缆料老化前后火灾危险性的变化。MCC结果表明,老化后的PVC的最大热释放速率增加了56.3%,总热释放量从10.6kJ/g增加到16.8kJ/g,点燃温度也由302℃提前到282℃。TG-FTIR和RTFTIR的分析结果显示,PVC的主要降解产物有水、碳氢化合物、二氧化碳和一氧化碳。PVC达到最大降解速率的温度约为240℃,与MCC、TG的结果相符合。PVC的裂解气体中包含CO2和CO,还有剧毒气体HCl。这些实验数据说明PVC材料在使用过程中火灾危险性加大,为老城区电气线路和设备的改造提供了理论依据和实验基础。  相似文献   

15.
以某一化学物质(ANPyO)为例,探讨了化学物质热危险性分析方法和步骤:建议首先从化学结构上对物质进行初步分析,然后根据化学结构进行理论计算预测,最后在前面研究的基础上,选择和确定采用合适的,比如:DSC/TG、ARC等小药量实验方法,研究化学物质的热危险性.对于ANPyO,通过分子结构可知其为多硝基多氨基芳烃,是具有潜在的燃烧、爆炸危险的活性化学物质.理论计算预测其属于高危险性物质.对其进行DSC/TG、ARC实验,得到绝热分解反应的热力学和动力学参数,自加速分解温度( TSADT)为199℃,热分解开始温度为310.0℃,最大反应速度出现在系统温度771.5℃时,自热分解开始到最大反应速度的时间为23.5min.文中研究可为该化学物质生产、使用和储运安全提供参考.  相似文献   

16.
为研究铝粉超细化后对烟火药剂性能的影响,将普通铝粉和纳米铝粉分别与氯酸钾、硫黄粉按照零氧平衡的同一配比(17%Al+63%KClO3+20%S)配制成烟火药剂,分别用0#样品和1#样品表示。用ARC、WL-1型落锤仪和MGY-1型摆式摩擦感度仪等试验装置从热安全性、撞击感度和摩擦感度等方面进行对比试验。结果表明,与含普通铝粉的0#样品相比,含纳米铝粉的1#烟火药剂热分解的初始反应温度明显降低(118.67℃<123.3℃),反应到达最大温升速率所需的时间明显延长(4.94min>0.13 min),反应所能达到的最高压力明显降低(2.77 MPa/g<3.14 MPa/g),反应动力学因子明显降低(361.85 kJ/mol<409.41 kJ/mol),撞击感度明显下降(12%<100%)。这说明铝粉粒径对药剂的性能有一定的影响。纳米铝粉的加入在加速烟火药剂反应进程的同时,可有效降低其反应的激烈程度、压力危险性和撞击危险性,即铝粉超细化后可以有效改善烟火药剂的性能,提高其安全性。  相似文献   

17.
针对煤质粉末活性炭最显著的热危险特性——自燃危险性进行试验。采用粉尘层最低着火温度测定系统对煤质粉末活性炭进行自燃试验,测定煤质粉末活性炭的最低着火温度;采用SDT Q600热重分析仪测定煤质粉末活性炭在氮气和空气气氛中以20℃/min的速率升温至700℃时的热解和燃烧特性,通过TG/DTG曲线计算其着火温度,并进行热稳定性评价。粉尘层自燃试验结果表明,煤质粉末活性炭最低着火温度为400℃,具有自燃危险性,易形成阴燃;氮气气氛中热解试验表明,热解过程经历了室温~120.0℃和280.0~700.0℃两次轻缓失重阶段,646.44℃时挥发分热失重速率最大,对应热失重速率峰值为0.082 6%/℃,自燃危险性较低;空气气氛中燃烧试验表明,燃烧过程经历了室温~95.5℃和300.0~600.0℃两次剧烈失重阶段,分别为吸附水分受热蒸发和氧化生成的有机官能团分解脱附导致,565.35℃时挥发分热失重速率最大,对应热失重速率峰值为13.20%/min,粉末较强的氧气吸附效应和较低的导热系数导致其自燃倾向较高,火灾危险性较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号