首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The national ‘Shandong Peninsula Blue Economic Zone Development Plan’ compels the further understanding of the distribution and potential risk of metals pollution in the east coast of China, where the rapid economic and urban development have been taken off and metal pollution has become a noticeable problem. Surface sediments collected from the largest swan habitat in Asia, the Swan Lake lagoon and the surrounding coastal area in Rongcheng Bay in northern Yellow Sea, were analyzed for the total metal concentrations and chemical phase partitioning of five heavy metals (Cu, Zn, Pb, Cd, and Cr). Metal contents in the studied region have increased significantly in the past decade. The speciation analyzed by the sequential extraction showed that Zn and Cr were present dominantly in the residual fraction and thus of low bioavailability, while Cd, Pb and Cu were found mostly in the non-residual fraction thus of high potential availability, indicating significant anthropogenic sources. Among the five metals, Cd is the most outstanding pollutant and presents high risk, and half of the surface sediments in the studied region had a 21% probability of toxicity based on the mean Effect Range-Median Quotient. At some stations with comparable total metal contents, remarkably different non-residual fraction portions were determined, pointing out that site-specific risk assessment integrating speciation is crucial for better management practices of coastal sediments.  相似文献   

2.
Larner BL  Seen AJ  Snape I 《Chemosphere》2006,65(5):811-820
This work has been the first application of DGT samplers for measuring metals in water and sediment porewater in the Antarctic environment, and whilst DGT water sampling was restricted to quantification of Cd, Fe and Ni, preconcentration using Empore chelating disks provided results for an additional nine elements (Sn, Pb, Al, Cr, Mn, Co, Cu, Zn, As). Although higher concentrations were measured for some metals (Cd, Ni, Pb) using the Empore technique, most likely due to particulate-bound or colloidal species becoming entrapped in the Empore chelating disks, heavy metal concentrations in the impacted Brown Bay were found to be comparable with the non-impacted O'Brien Bay. Sediment porewater sampling using DGT also indicated little difference between Brown Bay and O'Brien Bay for many metals (Cd, Al, Cr, Co, Ni, Cu), however, greater amounts of Pb, Mn, Fe and As were accumulated in DGT probes deployed in Brown Bay compared with O'Brien Bay, and a higher accumulation of Sn was observed in Brown Bay inner than any of the other three sites sampled. Comparison of DGT derived porewater concentrations with actual porewater concentrations showed limited resupply of Cd, Pb, Al, Cr, Mn, Co, Ni, Cu, Zn and As from the solid phase to porewater, with these metals appearing to be strongly bound to the sediment, however, resupply of Fe and Sn was apparent. Based upon our observations here, we suggest that Sn, and to a lesser extent Pb, are critical contaminants.  相似文献   

3.
Bottom sediments in coastal regions have been considered the ultimate sink for a number of contaminants, e.g., toxic metals. In this current study, speciation of metals in contaminated sediments of Oskarshamn harbor in the southeast of Sweden was performed in order to evaluate metal contents and their potential mobility and bioavailability. Sediment speciation was carried out by the sequential extraction BCR procedure for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and the exchangeable (F1), reducible (F2), oxidizable (F3), and residual (R) fractions were determined. The results have shown that Zn and Cd were highly associated with the exchangeable fraction (F1) with 42–58 % and 43–46 %, respectively, of their total concentrations in the mobile phase. The assessment of sediment contamination on the basis of quality guidelines established by the Swedish Environmental Protection Agency (SEPA) and the Italian Ministry of Environment (Venice protocol for dredged sediments) has shown that sediments from Oskarshamn harbor are highly contaminated with toxic metals, especially Cu, Cd, Pb, Hg, As, and Zn posing potential ecological risks. Therefore, it is of crucial importance the implementation of adequate strategies to tackle contaminated sediments in coastal regions all over the world.  相似文献   

4.
Total contents and speciation of selected heavy metals, including Al, Fe, Co, Ni, Pb, Zn, Cu, Cr, were measured in sediment samples and mussels Mya arenaria and Astarte borealis collected in the Horsund Fjord off Spitsbergen (Norwegian Sea) and the Bay of Gdansk (Baltic Sea). The investigation aimed at revealing differences in the accumulation pattern of heavy metals in mussels inhabiting sediments characterized by varying metal bioavailability. The contents of metals adsorbed to sediments and associated with iron and manganese hydroxides, which were obtained by sequential extraction, were utilized as a measure of metal bioavailability. The contents of Cd, Pb, Zn, Cu and Cr in mussels collected off Spitsbergen were generally lower than those in mussels from the Baltic Sea. In sediments collected off Spitsbergen the bioavailable fraction represented a small proportion (0-3.7% adsorbed metals and 0-11% associated with metals hydroxides) of total heavy metal contents. In sediments from the Baltic Sea the percentages of metals adsorbed and bound to hydroxides were 1-46% and 1-13%, respectively. The differences in bioavailable metal contents measured in sediments were utilized to explain the different contents of metals in mussels collected in the corresponding sites.  相似文献   

5.
Lee PK  Yu YH  Yun ST  Mayer B 《Chemosphere》2005,60(5):672-689
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 +/- 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.  相似文献   

6.
Peng SH  Wang WX  Li X  Yen YF 《Chemosphere》2004,57(8):839-851
We quantified the concentrations and distributions of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of Tuen Mun River, Hong Kong. The potential bioavailability of metals was assessed with a biomimetic extraction method using the sipunculan gut juices. The sediments were characterized by relatively high concentrations of trace metals. Field collected sediments were highly anoxic and the ratio of simultaneously extractable metal (sigmaSEM) to acid volatile sulfide (AVS) was much less than one in these sediments. The majority (>67%) of Cd, Pb, and Zn were bound to AVS, thus their concentrations in the sediment porewater were low. In contrast, Ni was little bound to AVS due to its lower ratios of SEM-Ni to total Ni concentrations. For Cu, relatively high concentrations in the sediment porewater was found, and total organic carbon, AVS and other resistant sulfide phase were the controlling factors for sedimentary Cu partitioning. Net metal adsorption from gut juices to anoxic sediments was observed in metal extraction experiments, suggesting that AVS determined the bioaccumulation and potential bioavailability of most metals in these sediments. Extraction of metals from the oxidized sediments by the gut juices was mainly attributed to metal redistribution from AVS to other geochemical phases. The gut juices were the most effective solvent or extractant than the simple electrolyte solution [I (NaNO(3)) = 0.01 M] and the natural overlying water. Cd was more easily extracted from the oxidized sediments than Zn that tended to have a stronger binding affinity with Fe-Mn oxide, clay and organic matter. The application of partial removal techniques in metal extraction experiments further demonstrated the differential controls of various sediment geochemical phases in affecting metal bioavailability, with the order of TOC > Fe-Mn oxides > carbonate.  相似文献   

7.
Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity.  相似文献   

8.
Total and extractable concentrations of Cu, Pb, and Zn were determined in surface sediments of west Chaohu Lake (China) by HCl-HNO3-HF-HClO4 digestion and an optimized BCR sequential extraction procedure, respectively. The metal pollution was evaluated by the enrichment factor approach, and the potential eco-risk was evaluated by the sediment quality guideline (SQG) and risk assessment code (RAC) assessments. The results indicated that both total and extractable metal concentrations were highly variable and were affected by sediment properties, even though the sediments were predominantly composed of <63-μm particles (>89 %). Enrichment factors of the metals based on the total and extractable concentrations all showed higher values in the northern lake area and decreasing values towards the south. This distribution indicated an input of anthropogenic metals via the Nanfei River. Anthropogenic Cu, Pb, and Zn in surface sediments showed comparable values for each metal based on the total and extractable concentrations, suggesting that anthropogenic Cu, Pb, and Zn resided predominantly in the extractable fractions. Sediment Cu had low eco-risk, and Pb and Zn had medium eco-risk by the SQG assessment, whereas the eco-risk rankings of Cu, Pb, and Zn were medium, low, and low–high, respectively, by the RAC assessment. Referencing to the labile (dilute acid soluble) metal concentrations, we deduced that the eco-risk of Cu may be largely overestimated by the RAC assessment, and the eco-risk of Pb may be largely overestimated by the SQG assessment. Overall, sediments Cu and Pb may pose low eco-risk, and Zn may pose low–high eco-risk.  相似文献   

9.
Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the soft tissue of Crassostrea iridescens and the associated surface sediments (bulk and bioavailable metal concentrations) from an area influenced by a sewage outfall in Mazatlán Bay (southeast Gulf of California), were determined by atomic absorption spectrophotometry. Significant spatial differences in metal concentrations in both the bulk and bioavailable forms in the sediments were identified. An enrichment of Cu, Ni, Pb and Zn in sites located on a south-north transect was detected indicating a dominant influence of the sewage outfall toward the north. C. iridescens accumulated more Zn, Cu, Ni, Fe, Cd; and less Mn, Cr and Pb than were bioavailable in the sediments, as measured using conventional extraction analysis. The degree of enrichment and the bioavailable metal concentrations in the sediments of the south portion of Mazatlán Bay is discussed. The potential ability of C. iridescens as a biomonitor of metallic pollutants is postulated.  相似文献   

10.
The concentrations of Cd, Co, Cu, Cr, Fe, Hg, Mn, Ni, Pb, Sn, Ti and Zn were analyzed by AAS, ICP MS and AFS in soft tissues and byssal threads of Mytilus galloprovincialis from Masan Bay and Ulsan Bay, Korea. Spatial variations in metal concentrations were found. The levels of Cd, Pb, Hg, Cu, Zn, Co and Mn were very high in the mussels from Ulsan Bay (Sts. U1, U2) and comparable with elevated concentrations of these elements in Mytilus sp. reported to date for other geographical areas. Seasonal differences in some metal concentrations were also observed. These variations may be caused by factors such as: a large difference in seawater temperature, food supply for the mussel population and/or freshwater runoff of particulate metal to the coastal water and weight changes brought about by gonadal development and the release of sexual products. Pb, Cu, Zn, Co, Ni, Fe and Mn were more enriched in byssal threads than in the soft tissues, hence the byssus seems to be more sensitive in reflecting the availabilities of trace metals in the ambient waters. Concentrations of trace metals varied with respect to the size of mussels and season, depending on many factors like sexual development, and seawater temperature, etc. The levels of some trace metals in seawater, especially in suspended matter were correlated significantly with those in soft tissues and byssal threads. There were spatial variations in metal concentrations in the soft tissue and byssus attributed to different sources of trace elements located near the sampling sites. There were significant relationships between concentrations of some metals (Cd, Cu, Pb, and Zn) in mussel soft tissues and byssal threads and suspended matter. This suggests that M. galloprovincialis can be used as a sensitive biomonitor for the availabilities of trace elements in the coastal waters off Korea.  相似文献   

11.
Metals in floodplain soils and sediments (deposits) can originate from lithogenic and anthropogenic sources, and their availability for uptake in biota is hypothesized to depend on both origin and local sediment conditions. In criteria-based environmental risk assessments, these issues are often neglected, implying local risks to be often over-estimated. Current problem definitions in river basin management tend to require a refined, site-specific focus, resulting in a need to address both aspects. This paper focuses on the determination of local environmental availabilities of metals in fluvial deposits by addressing both the origins of the metals and their partitioning over the solid and solution phases. The environmental availability of metals is assumed to be a key force influencing exposure levels in field soils and sediments. Anthropogenic enrichments of Cu, Zn and Pb in top layers could be distinguished from lithogenic background concentrations and described using an aluminium-proxy. Cd in top layers was attributed to anthropogenic enrichment almost fully. Anthropogenic enrichments for Cu and Zn appeared further to be also represented by cold 2 M HNO3 extraction of site samples. For Pb the extractions over-estimated the enrichments. Metal partitioning was measured, and measurements were compared to predictions generated by an empirical regression model and by a mechanistic-kinetic model. The partitioning models predicted metal partitioning in floodplain deposits within about one order of magnitude, though a large inter-sample variability was found for Pb.  相似文献   

12.
Concentrations of Fe, Mn, Zn, Cu, Pb, Ni, Cd and Co were determined in surface and core sediments collected from Manila Bay and in surface sediments from inflowing rivers. Core profiles revealed highly fluctuating and enriched Pb, Cd, Zn and Cu concentrations on the surface, suggestive of recent inputs coming from anthropogenic sources. Concentrations of Pb, Zn, and to a lesser extent Cu and Cd were higher in riverine sediments as compared with marine sediments, which may be attributed to the proximity of these riverine sites to pollutant sources. Comparison of metal concentration levels obtained with other areas in the world revealed elevated values for Pb and Cd, indicating a considerable amount of pollution in the area. Continuous monitoring and further studies of the area are recommended to ascertain long-term effects that may have not yet been reached.  相似文献   

13.
巢湖表层沉积物中重金属的分布特征及其污染评价   总被引:14,自引:1,他引:13  
以巢湖表层沉积物为研究对象,利用BCR连续提取法研究了沉积物中Cr、Co、Ni、Cu、Cd、Zn、V和Pb等8种重金属元素的分布特征,同时运用潜在风险指数法和地累积指数法综合评价了巢湖沉积物中重金属的生态风险。结果表明,巢湖沉积物中的重金属含量在空间上表现出东西高、中间低的分布特征。巢湖表层沉积物中Cr、Co、Ni、V和Cu 5种重金属都主要以残渣态为主,Zn和Cd主要以弱酸提取态为主,Pb以可还原态为主,同时,Co和Cu 2种元素的可交换态及可还原态含量占有较高比例,具有潜在危害性。相关性分析显示,Cr、Cu、Pb、Ni、Zn和Cd 6种重金属元素的来源和分布可能具有相似性,Co和V 2种重金属元素具有相似的地球化学行为且其主要来源可能与其他几种重金属不同。潜在生态风险指数评价结果表明,巢湖表层沉积物中8种重金属元素构成的生态危害顺序为:Cd>Pb>Co>Cu>Ni>Zn>V>Cr,Cd具有高的生态危害等级,其他7种重金属元素均为低生态危害等级。地累积指数法评价结果表明:巢湖沉积物重金属元素的富集程度为Cd>Zn>Pb>Co>Cu>V>Ni>Cr,Cr属于清洁级别,Co、Cu、V和Ni处于轻度污染水平,Zn和Pb处于偏中度污染,Cd达到了重污染水平。  相似文献   

14.
A rapid ultrasound accelerated sequential extraction procedure has been used to develop sequential extraction proposed by BCR protocol (the community Bureau of Reference now the European Union "Measurement and Testing Programme"). The effects of the ultrasonic treatment on the extraction of Cu, Cd, Cr, Pb, Ni and Zn from untreated sewage sludge collected from industrial site of Hyderabad city (Pakistan) were compared with those obtained from conventional sequentional extraction procedure of modified BCR protocol. In BCR method, each extraction steps takes 10h, where as with the use of compromise sonication conditions in ultrasonic bath, steps 1-3 of the sequential extraction (excluding the hydrogen peroxide digestion in step 3, which was not performed with sonication) could be completed in 30, 30 and 30 min, respectively. Extractable Cd, Cr, Pb and Ni contents were obtained by both comparable methodologies were measured by electrothermal atomic absorption spectrometry (ETAAS), while for Cu and Zn Flame atomic absorption spectrometry (FAAS) was used. The validations of both methods were compared by the analysis of certified reference material of soil amended with sewage sludge (BCR 483). According to statistical evaluation of the results, the proposed accelerated extraction method is valid alternative to conventional shaking with much shorter extraction time with p value <0.05. The overall metal recoveries in steps 1-3 (excluding residual step) were 95-100% of those obtained with the conventional BCR protocol, except for Cu extracted (91.6%) as related to indicative values of Cu in BCR 483 obtained in 1-3 steps. The results of the partitioning study of untreated industrial waste water sewage sludge, indicate that more easily mobilized forms (acid exchangeable) were predominant for Cd and Zn, in contrast, the largest amount of Pb and Cr was associated with the iron/manganese oxide and organic matter/sulphide fractions.  相似文献   

15.
In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment–water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m?2 day?1) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.  相似文献   

16.
Trace metals were examined in the muscle tissue of flatfish species of flounder, Platichthys flesus (Linnaeus, 1758), sediments from two southern Baltic Sea sites (Gdańsk Bay and Ustecko-?ebskie as a reference) and in two areas of the Portuguese Atlantic coast (Douro River estuary and Atlantic fishing ground as a reference) to evaluate spatial differences in trace metals. Additionally, the accumulation of trace metals in flounder of different length classes was assessed. Flounder from the Gdańsk Bay area contained twofold more cupper (Cu), lead (Pb) and mercury (Hg) than did flounder from the Douro River estuary, but zinc (Zn) and cadmium (Cd) were at similar concentrations. The sediments from Gdańsk Bay contained significantly more Zn and threefold more Cd, while concentrations of Cu and Pb were twofold lower. The concentrations of metals in the sediments did not correlate with those in the flounder. Spatial differences were noted in metal concentrations in flounder from the southern Baltic Sea and the Portuguese Atlantic coast as well as within these regions, with higher concentrations in the flounder from the Baltic Sea Gdańsk Bay. The flounder in length class 25–30 cm from Gdańsk Bay contained metal concentrations comparable to those of class 40–45 cm specimens from the Atlantic coast. The accumulation of metals in flounder length classes differed in the two regions.  相似文献   

17.
Elevated concentrations of dissolved and particulate Cd, Cu, Pb and Zn have been determined in the waters of Kandalaksha Bay (White Sea, Russia), following the ice melt in the spring of 2000. Dissolved metal maxima in the surface waters were observed at some stations and concentrations generally decreased with depth. The suspended particulate matter (SPM) comprised a non-lithogenic fraction in the range 12-83%, and had elevated metal concentrations that showed no trend with depth or salinity and was compositionally distinct from the sediments. A log-linear relationship existed between the concentrations of metals in sediments and in SPM and their respective Al concentrations, indicating a source of metal-rich particles, with low Al content, to the Bay. The results suggest that Kandalaksha Bay has been impacted by industrial activity on the Kola Peninsula and that restricted water exchange will hinder its recovery from metal contamination.  相似文献   

18.
The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206Pb/207Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary.  相似文献   

19.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

20.
Metal (Pb, Cu and Zn) partitioning in six separated sediment size fractions (<8, 8-12, 12-19, 19-31, 31-42, 42-60 microm) of river bed sediment have been analyzed by sequential extraction. The concentrations of some major elements (Si, Al, Ca, Mg, K, Na, Fe, Mn and P), and organic and inorganic C were determined to correlate the elemental composition of the sediment with metal speciation and grain size. Results show that Zn and Pb concentrations increase with decreasing grain size. For Big Creek and Big Otter Creek, respectively, the highest concentrations of Zn (326 and 230 mg kg(-1)) and Pb (158 and 67 mg kg(-1)) were found in the smallest (<8 microm) fraction, whereas the Cu levels (619 and 1281 mg kg(-1)) were most abundant in the second smallest (8-12 microm) fraction. The major accumulative phases for Cu, Zn and Pb were carbonates, Fe/Mn oxides and organic matter, but the relative importance of each phase varied for individual metals and grain sizes. The extraction data show increasing potential bioavailability of metals with decreasing grain size. Estimates of metal yields in the study catchments suggest that over 80% of the metal yield in sediment smaller than 63 microm is associated with solids smaller than 31 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号